Vaccination by anthrax protective antigen (PA)-based vaccines requires multiple immunization, underlying the need to develop more efficacious vaccines or alternative vaccination regimens. In spite of the vast use of PA-based vaccines, the definition of a marker for protective immunity is still lacking. Here we describe studies designed to help define such markers. To this end we have immunized guinea pigs by different methods and monitored the immune response and the corresponding extent of protection against a lethal challenge with anthrax spores. Active immunization was performed by a single injection using one of two methods: (i) vaccination with decreasing amounts of PA and (ii) vaccination with constant amounts of PA that had been thermally inactivated for increasing periods. In both studies a direct correlation between survival and neutralizing-antibody titer was found (r 2 ؍ 0.92 and 0.95, respectively). Most significantly, in the two protocols a similar neutralizing-antibody titer range provided 50% protection. Furthermore, in a complementary study involving passive transfer of PA hyperimmune sera to naive animals, a similar correlation between neutralizing-antibody titers and protection was found. In all three immunization studies, neutralization titers of at least 300 were sufficient to confer protection against a dose of 40 50% lethal doses (LD 50 ) of virulent anthrax spores of the Vollum strain. Such consistency in the correlation of protective immunity with anti-PA antibody titers was not observed for antibody titers determined by an enzyme-linked immunosorbent assay. Taken together, these results clearly demonstrate that neutralizing antibodies to PA constitute a major component of the protective immunity against anthrax and suggest that this parameter could be used as a surrogate marker for protection.
Interest in the pathogenesis, detection, and prevention of viral infections has increased broadly in many fields of research over the past year. The development of water treatment technology to combat viral infection by inactivation or disinfection might play a key role in infection prevention in places where drinking water sources are biologically contaminated. Laser-induced graphene (LIG) has antimicrobial and antifouling surface effects mainly because of its electrochemical properties and texture, and LIG-based water filters have been used for the inactivation of bacteria. However, the antiviral activity of LIG-based filters has not yet been explored. Here we show that LIG filters also have antiviral effects by applying electrical potential during filtration of the model prototypic poxvirus Vaccinia lister. This antiviral activity of the LIG filters was compared with its antibacterial activity, which showed that higher voltages were required for the inactivation of viruses compared to that of bacteria. The generation of reactive oxygen species, along with surface electrical effects, played a role in the mechanism of virus inactivation. This new property of LIG highlights its potential for use in water and wastewater treatment for the electrochemical disinfection of various pathogenic microorganisms, including bacteria and viruses.
This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.