Fine-grained visual categorization (FGVC) is challenging due in part to the fact that it is often difficult to acquire an enough number of training samples. To employ large models for FGVC without suffering from overfitting, existing methods usually adopt a strategy of pretraining the models using a rich set of auxiliary data, followed by finetuning on the target FGVC task. However, the objective of pre-training does not take the target task into account, and consequently such obtained models are suboptimal for fine-tuning. To address this issue, we propose in this paper a new deep FGVC model termed MetaFGNet. Training of MetaFGNet is based on a novel regularized meta-learning objective, which aims to guide the learning of network parameters so that they are optimal for adapting to the target FGVC task. Based on MetaFGNet, we also propose a simple yet effective scheme for selecting more useful samples from the auxiliary data. Experiments on benchmark FGVC datasets show the efficacy of our proposed method.
Fine-grained object categorization aims for distinguishing objects of subordinate categories that belong to the same entry-level object category. It is a rapidly developing subfield in multimedia content analysis. The task is challenging due to the facts that (1) training images with ground-truth labels are difficult to obtain, and (2) variations among different subordinate categories are subtle. It is well established that characterizing features of different subordinate categories are located on local parts of object instances. In fact, careful part annotations are available in many fine-grained categorization datasets. However, manually annotating object parts requires expertise, which is also difficult to generalize to new fine-grained categorization tasks. In this work, we propose a Weakly Supervised Part Detection Network (PartNet) that is able to detect discriminative local parts for use of fine-grained categorization. A vanilla PartNet builds on top of a base subnetwork two parallel streams of upper network layers, which respectively compute scores of classification probabilities (over subordinate categories) and detection probabilities (over a specified number of discriminative part detectors) for local regions of interest (RoIs). The imagelevel prediction is obtained by aggregating element-wise products of these region-level probabilities. To generate a diverse set of RoIs as inputs of PartNet, we propose a simple Discretized Part Proposals module (DPP) that directly targets for proposing candidates of discriminative local parts, with no bridging via object-level proposals. Experiments on the benchmark CUB-200-2011 and Oxford Flower 102 datasets show the efficacy of our proposed method for both discriminative part detection and finegrained categorization. In particular, we achieve the new stateof-the-art performance on CUB-200-2011 dataset when groundtruth part annotations are not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.