Zanthoxylum bungeanum is one of the most important medicinal and edible homologous plants because of its potential health benefits and unique flavors. The chemical components in compositions and contents vary with plant genotype variations and various environmental stress conditions. Fatty acids participate in various important metabolic pathways in organisms to resist biotic and abiotic stresses. To determine the variations in metabolic profiling and genotypes, the fatty acid profiling and key differential genes under low temperature stress in two Z. bungeanum varieties, cold-tolerant (FG) and sensitive (FX), were investigated. Twelve main fatty acids were found in two Z. bungeanum varieties under cold stress. Results showed that the contents of total fatty acids and unsaturated fatty acids in FG were higher than those in FX, which made FG more resistant to low temperature. Based on the result of orthogonal partial least squares discriminant analysis, palmitic acid, isostearic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FG under cold stress, while isomyristic acid, palmitic acid, isostearic acid, stearic acid, oleic acid, linolenic acid and eicosenoic acid were the important differential fatty acids in FX. Furthermore, fatty acid synthesis pathway genes fatty acyl-ACP thioesterase A (FATA), Delta (8)-fatty-acid desaturase 2 (SLD2), protein ECERIFERUM 3 (CER3), fatty acid desaturase 3 (FAD3) and fatty acid desaturase 5 (FAD5) played key roles in FG, and SLD2, FAD5, 3-oxoacyl-[acyl-carrier-protein] synthase I (KAS I), fatty acyl-ACP thioesterase B (FATB) and acetyl-CoA carboxylase (ACC) were the key genes responding to low temperature in FX. The variation and strategies of fatty acids in two varieties of Z. bungeanum were revealed at the metabolic and molecular level. This work provides a reference for the study of chemical components in plant stress resistance.
Volatile oils of prickly ash (Zanthoxylum) pericarps have various potential biological functions with considerable relevance to food, pharmacological, and industrial applications. The volatile profile of oils extracted from prickly ash pericarps obtained from 72 plantations in China was determined by gas chromatography and mass spectrometry. Several chemometric analyses were used to better understand the volatile oil profile differences among different pericarps and to determine the key factors that affected geographical variations in the main volatile constituents of oils. A total of 47 constituents were detected with D-limonene, alfa-myrcene, and linalool as the most abundant. The volatile profile of pericarp oils was significantly affected by prickly ash species and some environmental factors, and the key factors that affected volatile profile variations for different prickly ash species were diverse. Chemometric analyses based on the volatile oil profile could properly distinguish Z. armatum pericarps from other pericarps. This study provides comprehensive information on the volatile oil profile of pericarps from different prickly ash species and different plantations, and it can be beneficial to a system for evaluating of pericarp quality. Moreover, this study speculates on the key environmental factors that cause volatile oil variations for each species, and can help to obtain better prickly ash pericarp volatile oils by improving the cultivated environments.
Plant growth and survival in nature, its growth process, will be affected by various factors from the environment, among which temperature has a greater impact. In recent years, extreme weather has frequently appeared, and the growth of crops has been increasingly affected by the environment. As an important flavoring and Chinese herbal medicine crop, Zanthoxylum bungeanum is also facing the harm of low-temperature stress. Plant hormones play a vital role in the response of plants to low temperatures. In this study, ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine the hormone components of cold-tolerant and cold-sensitive varieties of Z. bungeanum. Combined with chemometric analysis and weighted gene co-expression network analysis (WGCNA), the hormone component differences and hormone response strategies of Z. bungeanum under low-temperature stress were comprehensively studied. The results showed that 45 hormones were detected in Z. bungeanum. Among them, there were 7 kinds of components with high content and were detected in both two varieties. At the late stage of low-temperature stress, the contents of abscisic acid (ABA) and ABA-glucosyl ester (ABA-GE) in Fuguhuajiao (FG) were significantly increased, and the latter served as the storage of the former to supplement the active ABA. Orthogonal partial least squares discriminant analysis (OPLS-DA) found that indole-3-carboxylic acid (ICA), indole-3-carboxaldehyde (ICAld), meta-Topolin riboside (mTR), cis-Zeatin-O-glucoside riboside (cZROG), and N6-isopentenyladenosine (IPR) in FG were the upregulated important difference components, and IPR and 2-methylthio-cis-zeatin riboside (2MeScZR) in Fengxiandahongpao (FX) were the upregulated important difference components. There were common crossing points and independent response pathways in response to low temperature in two varieties. WGCNA analysis found that the main hormone components were associated with multiple metabolic pathways including carbon, fatty acid, amino acid, and sugar metabolism, indicating that hormone regulation plays an important role in the response of Z. bungeanum to low temperature. This study clarified the hormone response mechanism of Z. bungeanum under low-temperature stress and provided a reference and basis for further improving the cold resistance of Z. bungeanum and cultivating new varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.