In this paper, we present a promising method for binarization of historical and degraded document images, based on texture features. The proposed method is an adaptive threshold-based. This latter is computed by using a descriptor based on a co-occurrence matrix. The proposed method is tested objectively, using DIBCO dataset degraded documents and subjectively, using a set of ancient degraded documents provided by a national library. The results are satisfactory and promising, and present an improvement to classical methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.