In this paper we consider nonhomogeneous birth and death processes (BDP) with periodic rates. Two important parameters are studied, which are helpful to describe a nonhomogeneous BDP X = X (t), t ≥ 0: the limiting mean value (namely, the mean length of the queue at a given time t) and the double mean (i.e. the mean length of the queue for the whole duration of the BDP). We find conditions of existence of the means and determine bounds for their values, involving also the truncated BDP X N . Finally we present some examples where these bounds are used in order to approximate the double mean.
We investigate a class of exponentially weakly ergodic inhomogeneous birth and death processes. We consider special transformations of the reduced intensity matrix of the process and obtain uniform (in time) error bounds of truncations. Our approach also guarantees that we can find limiting characteristics approximately with an arbitrarily fixed error. As an example, we obtain the respective bounds of the truncation error for an Mt/Mt/S queue for any number of servers S. Arbitrary intensity functions instead of periodic ones can be considered in the same manner.
In this paper we present a method for the computation of convergence bounds for four classes of multiserver queueing systems, described by inhomogeneous Markov chains. Specifically, we consider an inhomogeneous M/M/S queueing system with possible state-dependent arrival and service intensities, and additionally possible batch arrivals and batch service. A unified approach based on a logarithmic norm of linear operators for obtaining sharp upper and lower bounds on the rate of convergence and corresponding sharp perturbation bounds is described. As a side effect, we show, by virtue of numerical examples, that the approach based on a logarithmic norm can also be used to approximate limiting characteristics (the idle probability and the mean number of customers in the system) of the systems considered with a given approximation error.
Service life of many real-life systems cannot be considered infinite, and thus the systems will be eventually stopped or will break down. Some of them may be re-launched after possible maintenance under likely new initial conditions. In such systems, which are often modelled by birth and death processes, the assumption of stationarity may be too strong and performance characteristics obtained under this assumption may not make much sense. In such circumstances, timedependent analysis is more meaningful. In this paper, transient analysis of one class of Markov processes defined on non-negative integers, specifically, inhomogeneous birth and death processes allowing special transitions from and to the origin, is carried out. Whenever the process is at the origin, transition can occur to any state, not necessarily a neighbouring one. Being in any other state, besides ordinary transitions to neighbouring states, a transition to the origin can occur. All possible transition intensities are assumed to be non-random functions of time and may depend (except for transition to the origin) on the process state. To the best of our knowledge, first ergodicity and perturbation bounds for this class of processes are obtained. Extensive numerical results are also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.