Background Celastrol, a triterpene compound derived from the traditional Chinese medicine Tripterygium wilfordii , has been reported to possess potential antitumor activity towards various malignancies. However, the effect of celastrol on glioma cells and the underlying molecular mechanisms remain elusive. Methods Glioma cells, including the U251, U87-MG and C6 cell lines and an animal model were used. The effects of celastrol on cells were evaluated by flow cytometry, confocal microscopy, reactive oxygen species production assay and immunoblotting after treatment of celastrol. Fisher’s exact test, a one-way ANOVA and the Mann-Whitney U-test were used to compare differences between groups. All data were analyzed using SPSS version 21.0 software. Results Here, we found that exposure to celastrol induced G2/M phase arrest and apoptosis. Celastrol increased the formation of autophagosomes, accumulation of LC3B and the expression of p62 protein. Celastrol-treated glioma cells exhibited decreased cell viability after the use of autophagy inhibitors. Additionally, autophagy and apoptosis caused by celastrol in glioma cells inhibited each other. Furthermore, celastrol induced JNK activation and ROS production and inhibited the activities of Akt and mTOR kinases. JNK and ROS inhibitors significantly attenuated celastrol-trigged apoptosis and autophagy, while Akt and mTOR inhibitors had opposite effects. Conclusions In conclusion, our study revealed that celastrol caused G2/M phase arrest and trigged apoptosis and autophagy by activating ROS/JNK signaling and blocking the Akt/mTOR signaling pathway. Electronic supplementary material The online version of this article (10.1186/s13046-019-1173-4) contains supplementary material, which is available to authorized users.
Triptolide is a trace natural product of Tripterygium wilfordii. It has antitumor activities, particularly against pancreatic cancer cells. Identification of genes and elucidation of the biosynthetic pathway leading to triptolide are the prerequisite for heterologous bioproduction. Here, we report a reference-grade genome of T. wilfordii with a contig N50 of 4.36 Mb. We show that copy numbers of triptolide biosynthetic pathway genes are impacted by a recent whole-genome triplication event. We further integrate genomic, transcriptomic, and metabolomic data to map a gene-to-metabolite network. This leads to the identification of a cytochrome P450 (CYP728B70) that can catalyze oxidation of a methyl to the acid moiety of dehydroabietic acid in triptolide biosynthesis. We think the genomic resource and the candidate genes reported here set the foundation to fully reveal triptolide biosynthetic pathway and consequently the heterologous bioproduction.
Summary Celastrol is a promising bioactive compound isolated from Tripterygium wilfordii and has been shown to possess many encouraging preclinical applications. However, the celastrol biosynthetic pathway is poorly understood, especially the key oxidosqualene cyclase (OSC) enzyme responsible for cyclisation of the main scaffold. Here, we report on the isolation and characterisation of three OSCs from T. wilfordii: TwOSC1, TwOSC2 and TwOSC3. Both TwOSC1 and TwOSC3 were multiproduct friedelin synthases, while TwOSC2 was a β‐amyrin synthase. We further found that TwOSC1 and TwOSC3 were involved in the biosynthesis of celastrol and that their common product, friedelin, was a precursor of celastrol. We then reconstituted the biosynthetic pathway of friedelin in engineered yeast constructed by the CRISPR/Cas9 system, with protein modification and medium optimisation, leading to heterologous production of friedelin at 37.07 mg l−1 in a shake flask culture. Our study was the first to identify the genes responsible for biosynthesis of the main scaffold of celastrol and other triterpenes in T. wilfordii. As friedelin has been found in many plants, the results and approaches described here have laid a solid foundation for further explaining the biosynthesis of celastrol and related triterpenoids. Moreover, our results provide insights for metabolic engineering of friedelane‐type triterpenes.
Panax notoginseng , a perennial herb of the genus Panax in the family Araliaceae, has played an important role in clinical treatment in China for thousands of years because of its extensive pharmacological effects. Here, we report a high-quality reference genome of P. notoginseng , with a genome size up to 2.66 Gb and a contig N50 of 1.12 Mb, produced with third-generation PacBio sequencing technology. This is the first chromosome-level genome assembly for the genus Panax . Through genome evolution analysis, we explored phylogenetic and whole-genome duplication events and examined their impact on saponin biosynthesis. We performed a detailed transcriptional analysis of P. notoginseng and explored gene-level mechanisms that regulate the formation of characteristic tubercles. Next, we studied the biosynthesis and regulation of saponins at temporal and spatial levels. We combined multi-omics data to identify genes that encode key enzymes in the P. notoginseng terpenoid biosynthetic pathway. Finally, we identified five glycosyltransferase genes whose products catalyzed the formation of different ginsenosides in P. notoginseng . The genetic information obtained in this study provides a resource for further exploration of the growth characteristics, cultivation, breeding, and saponin biosynthesis of P. notoginseng .
Background Tripterygium wilfordii Hook. f. (T. wilfordii) is an important medicinal plant with anti-inflammatory, immunosuppressive and anti-tumor activities. The main bioactive ingredients are diterpenoids and triterpenoids, such as triptolide, triptophenolide and celastrol. However, the production of terpenoids from original plants, hairy roots and dedifferentiated cells (DDCs) are not satisfactory for clinical applications. To find a new way to further improve the production of terpenoids, we established a new culture system of cambial meristematic cells (CMCs) with stem cell-like properties, which had strong vigor and high efficiency to produce large amounts of terpenoids of T. wilfordii. Results CMCs of T. wilfordii were isolated and cultured for the first time. CMCs were characterized consistent with stem cell identities based on their physiological and molecular analysis, including morphology of CMCs, hypersensitivity to zeocin, thin cell wall and orthogonal partial least square-discriminant analysis, combination of transcriptional data analysis. After induction with methyl jasmonate (MJ), the maximal production of triptolide, celastrol and triptophenolide in CMCs was 312%, 400% and 327% higher than that of control group, respectively. As for medium, MJ-induced CMCs secreted 231% triptolide and 130% triptophenolide at the maximum level into medium higher than that of control group. Maximal celastrol production of induced CMCs medium was 48% lower than that of control group. Long-term induction significantly enhanced the production of terpenoids both in cells and medium. The reason for increasing the yield of terpenoids was that expression levels of 1-deoxy-d-xylulose-5-phosphate synthase (DXS), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) and hydroxymethylglutaryl-CoA synthase (HMGS) were upregulated in CMCs after induction. Conclusions For the first time, CMCs of T. wilfordii were isolated, cultured, characterized and applied. Considering the significant enrichment of terpenoids in CMCs of T. wilfordii, CMCs could provide an efficient and controllable platform for sustainable production of terpenoids, which can be a better choice than DDCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.