Oral mucosal homeostasis is achieved by complex immunologic mechanisms, orchestrating host immunity to adapt to the physiologic functions of the various specialized niches in the oral cavity. Dental implants introduce a novel mucosal niche to the immune system to deal with. Nevertheless, the immune mechanisms engaged toward implants and whether they have broader effects are not well defined. Using a murine model, we found an accumulation of neutrophils and RANKL-expressing T and B lymphocytes in the implant-surrounding mucosa, accompanied by local bone loss. Surprisingly, the presence of implants had an impact on remote periodontal sites, as elevated inflammation and accelerated bone loss were detected in intact distant teeth. This was due to microbial dysbiosis induced by the implants, since antibiotic treatment prevented bone loss around teeth. However, antibiotic treatment failed to prevent the loss of implant-supporting bone, highlighting the distinct mechanisms mediating bone loss at each site. Further analysis revealed that implants induced chronic lymphocyte activation and increased mRNA expression of IFN-α and accumulation of IFN-α–producing plasmacytoid dendritic cells, which we previously reported as bone-destructive immune responses. Collectively, this study demonstrates that implants have a strong and broad impact on oral mucosal homeostasis, inducing periodontal bone loss in a niche-specific manner that is both microbiota dependent and independent.
As the most potent cells activating and polarizing naive T cells, dendritic cells (DCs) are of major importance in the induction of immunity and tolerance. DCs are a heterogeneous population of antigen-presenting cells that are widely distributed in lymphoid and nonlymphoid tissues. Murine studies have highlighted the important role of oral DCs and Langerhans cells (LCs) in orchestrating the physiological homeostasis of the oral mucosa. DCs are also critically involved in pathological conditions such as periodontal diseases, in which gingival DCs appear to have special localization and function. While the characterization of human DCs in health and disease has been extensively investigated in various tissues, this topic was rarely studied in human gingiva. Here, we employed an up-to-date approach to characterize by flow cytometry the gingival DCs of 27 healthy subjects and 21 periodontal patients. Four distinct subsets of mononuclear phagocytes were identified in healthy gingiva: conventional DC type 1 (cDC1), cDC2, plasmacytoid DCs (pDCs), and LCs. In periodontitis patients, the frequencies of gingival LCs and pDCs were dysregulated, as LCs decreased, whereas pDCs increased in the diseased gingiva. This shift in the prevalence of DCs was accompanied by increased expression of the proinflammatory cytokines interleukin (IL)–1β, interferon (IFN)–α, and IFN-γ, while the anti-inflammatory cytokine IL-10 was suppressed. We further found that smoking, a known risk factor of periodontitis, specifically reduces gingival LCs in healthy individuals, indicating a possible role of LCs in the elevated severity of periodontitis in smokers. Collectively, this work reveals the various DC subsets residing in the human gingiva and the impact of periodontitis, as well as smoking, on the prevalence of each subset. Our findings provide a foundation toward understanding the role of human DCs in orchestrating physiological oral immunity and set the stage for the evaluation and modulation of shifts in immunity associated with periodontitis.
γδ T cells are nonclassical T lymphocytes representing the major T-cell population at epithelial barriers. In the gingiva, γδ T cells are enriched in epithelial regions adjacent to the biofilm and are considered to regulate local immunity to maintain host-biofilm homeostatic interactions. This delicate balance is often disrupted resulting in the development of periodontitis. Previous studies in mice lacking γδ T cells from birth ( Tcrd-/- mice) examined the impact of these cells on ligature-induced periodontitis. Data obtained from those studies proposed either a protective effect or no impact to γδ T cells in this setting. Here, we addressed the role of γδ T cells in periodontitis using the recently developed Tcrd-GDL mice, enabling temporal ablation of γδ T cells. Specifically, the impact of γδ T cells during periodontitis was examined in 2 modalities: the ligature model and the oral infection model in which the pathogen Porphyromonas gingivalis was administrated via successive oral gavages. Ablation of γδ T cells during ligature-induced periodontitis had no impact on innate immune cell recruitment to the ligated gingiva. In addition, the number of osteoclasts and subsequent alveolar bone loss were unaffected. However, γδ T cells play a pathologic role during P. gingivalis infection, and their absence prevented alveolar bone loss. Further analysis revealed that γδ T cells were responsible for the recruitment of neutrophils and monocytes to the gingiva following the exposure to P. gingivalis. γδ T-cell ablation also downregulated osteoclastogenesis and dysregulated long-term immune responses in the gingiva. Collectively, this study demonstrates that whereas γδ T cells are dispensable to periodontitis induced by the ligature model, they play a deleterious role in the oral infection model by facilitating pathogen-induced bone-destructive immune responses. On a broader aspect, this study highlights the complex immunopathologic mechanisms involved in periodontal bone loss.
Aim The aetiology and pathogenesis of peri‐implantitis are currently under active research. This study aimed to dissect the pathogenesis of murine experimental peri‐implantitis and assess Resolvin D2 (RvD2) as a new treatment modality. Materials and Methods Four weeks following titanium implant insertion, mice were infected with Porphyromonas gingivalis using single or multiple oral lavages. RvD2 was administrated following infection, and tissues were analysed using flow cytometry, quantitative RT‐PCR, taxonomic profiling, and micro‐computed tomography. Results Repeated infections with Pg resulted in microbial dysbiosis and a higher influx of innate and adaptive leukocytes to the peri‐implant mucosa (PIM) than to gingiva surrounding the teeth. This was accompanied by increased expression levels of IFN‐α, IL‐1β, and RANKL\OPG ratio. Interestingly, whereas repetitive infections resulted in bone loss around implants and teeth, a single infection induced bone loss only around implants, suggesting a higher susceptibility of the implants to infection. Treatment with RvD2 prevented Pg‐driven bone loss and reduced leukocyte infiltration to the PIM. Conclusions Murine dental implants are associated with dysregulated local immunity and increase susceptibility to pathogen‐induced peri‐implantitis. However, the disease can be prevented by RvD2 treatment, highlighting the promising therapeutic potential of this treatment modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.