γδT cells are a major component of epithelial tissues and play a role in tissue homeostasis and host defense. γδT cells also reside in the gingiva, an oral tissue covered with specialized epithelium that continuously monitors the challenging dental biofilm. Whereas most research on intraepithelial γδT cells focuses on the skin and intestine epithelia, our knowledge on these cells in the gingiva is still incomplete. In this study, we demonstrate that even though the gingiva develops after birth, the majority of gingival γδT cells are fetal thymus-derived Vγ6+ cells, and to a lesser extent Vγ1+ and Vγ4+ cells. Furthermore, we show that γδT cells are motile and locate preferentially in the epithelium adjacent to the biofilm. Vγ6+ cells represent the major source of IL-17–producing cells in the gingiva. Chimeric mice and parabiosis experiments indicated that the main fraction of gingival γδT cells is radioresistant and tissue-resident, persisting locally independent of circulating γδT cells. Notably, gingival γδT cell homeostasis is regulated by the microbiota as the ratio of Vγ6+ and Vγ4+ cells was reversed in germ-free mice, and their activation state was decreased. As a consequence, conditional ablation of γδT cells results in elevated gingival inflammation and subsequent alterations of oral microbial diversity. Taken together, these findings suggest that oral mucosal homeostasis is shaped by reciprocal interplays between γδT cells and local microbiota.
Highlights d Single-cell RNA-seq reveals differential tissue-specific adaptation of Vg6 + T cells d Skin Vg6 + T cells show an activated IL-17-and amphiregulinproducing effector phenotype d Expression of Bcl2a1 family proteins protect activated skin Vg6 + T cells from apoptosis d Skin Vg6 + and Vg4 + T cells can be distinguished by Scart1 versus Scart2 expression
Sustained mechanical forces applied to tissue are known to shape local immunity. In the oral mucosa, mechanical stress, either naturally induced by masticatory forces or externally via mechanical loading during orthodontic tooth movement (OTM), is translated, in part, by T cells to alveolar bone resorption. Nevertheless, despite being considered critical for OTM, depletion of CD4+ and CD8+ T cells is reported to have no impact on tooth movement, thus questioning the function of αβT cells in OTM-associated bone resorption. To further address the role of T cells in OTM, we first characterized the leukocytes residing in the periodontal ligament (PDL), the tissue of interest during OTM, and compared it to the neighboring gingiva. Unlike the gingiva, monocytes and neutrophils represent the major leukocytes of the PDL. These myeloid cells were also the main leukocytes in the PDL of germ-free mice, although at lower levels than SPF mice. T lymphocytes were more enriched in the gingiva than the PDL, yet in both tissues, the relative fraction of the γδT cells was higher than the αβ T cells. We thus sought to examine the role of γδT cells in OTM. γδT cells residing in the PDL were mainly Vγ6+ and produced interleukin (IL)–17A but not interferon-γ. Using Tcrd-GDL mice allowing conditional ablation of γδT cells in vivo, we demonstrate that OTM was greatly diminished in the absence of γδT cells. Further analysis revealed that ablation of γδT cells decreased early IL-17A expression, monocyte and neutrophil recruitment, and the expression of the osteoclastogenic molecule receptor activator of nuclear factor–κβ ligand. This, eventually, resulted in reduced numbers of osteoclasts in the pressure site during OTM. Collectively, our data suggest that γδT cells are essential in OTM for translating orthodontic mechanical forces to bone resorption, required for relocating the tooth in the alveolar bone.
Oral mucosal homeostasis is achieved by complex immunologic mechanisms, orchestrating host immunity to adapt to the physiologic functions of the various specialized niches in the oral cavity. Dental implants introduce a novel mucosal niche to the immune system to deal with. Nevertheless, the immune mechanisms engaged toward implants and whether they have broader effects are not well defined. Using a murine model, we found an accumulation of neutrophils and RANKL-expressing T and B lymphocytes in the implant-surrounding mucosa, accompanied by local bone loss. Surprisingly, the presence of implants had an impact on remote periodontal sites, as elevated inflammation and accelerated bone loss were detected in intact distant teeth. This was due to microbial dysbiosis induced by the implants, since antibiotic treatment prevented bone loss around teeth. However, antibiotic treatment failed to prevent the loss of implant-supporting bone, highlighting the distinct mechanisms mediating bone loss at each site. Further analysis revealed that implants induced chronic lymphocyte activation and increased mRNA expression of IFN-α and accumulation of IFN-α–producing plasmacytoid dendritic cells, which we previously reported as bone-destructive immune responses. Collectively, this study demonstrates that implants have a strong and broad impact on oral mucosal homeostasis, inducing periodontal bone loss in a niche-specific manner that is both microbiota dependent and independent.
γδ T cells are nonclassical T lymphocytes representing the major T-cell population at epithelial barriers. In the gingiva, γδ T cells are enriched in epithelial regions adjacent to the biofilm and are considered to regulate local immunity to maintain host-biofilm homeostatic interactions. This delicate balance is often disrupted resulting in the development of periodontitis. Previous studies in mice lacking γδ T cells from birth ( Tcrd-/- mice) examined the impact of these cells on ligature-induced periodontitis. Data obtained from those studies proposed either a protective effect or no impact to γδ T cells in this setting. Here, we addressed the role of γδ T cells in periodontitis using the recently developed Tcrd-GDL mice, enabling temporal ablation of γδ T cells. Specifically, the impact of γδ T cells during periodontitis was examined in 2 modalities: the ligature model and the oral infection model in which the pathogen Porphyromonas gingivalis was administrated via successive oral gavages. Ablation of γδ T cells during ligature-induced periodontitis had no impact on innate immune cell recruitment to the ligated gingiva. In addition, the number of osteoclasts and subsequent alveolar bone loss were unaffected. However, γδ T cells play a pathologic role during P. gingivalis infection, and their absence prevented alveolar bone loss. Further analysis revealed that γδ T cells were responsible for the recruitment of neutrophils and monocytes to the gingiva following the exposure to P. gingivalis. γδ T-cell ablation also downregulated osteoclastogenesis and dysregulated long-term immune responses in the gingiva. Collectively, this study demonstrates that whereas γδ T cells are dispensable to periodontitis induced by the ligature model, they play a deleterious role in the oral infection model by facilitating pathogen-induced bone-destructive immune responses. On a broader aspect, this study highlights the complex immunopathologic mechanisms involved in periodontal bone loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.