Facial Landmark detection in natural images is a very active research domain. Impressive progress has been made in recent years, with the rise of neural-network based methods and large-scale datasets. However, it is still a challenging and largely unexplored problem in the artistic portraits domain. Compared to natural face images, artistic portraits are much more diverse. They contain a much wider style variation in both geometry and texture and are more complex to analyze. Moreover, datasets that are necessary to train neural networks are unavailable. We propose a method for artistic augmentation of natural face images that enables training deep neural networks for landmark detection in artistic portraits. We utilize conventional facial landmarks datasets, and transform their content from natural images into "artistic face" images. In addition, we use a feature-based landmark correction step, to reduce the dependency between the different facial features, which is necessary due to position and shape variations of facial landmarks in artworks. To evaluate our landmark detection framework, we created an "Artistic-Faces" dataset, containing 160 artworks of various art genres, artists and styles, with a large variation in both geometry and texture. Using our method, we can detect facial features in artistic portraits and analyze their geometric style. This allows the definition of signatures for artistic styles of artworks and artists, that encode both the geometry and the texture style. It also allows us to present a geometric-aware style transfer method for portraits.
Semantic segmentation is a difficult task even when trained in a supervised manner on photographs. In this paper, we tackle the problem of semantic segmentation of artistic paintings, an even more challenging task because of a much larger diversity in colors, textures, and shapes and because there are no ground truth annotations available for segmentation. We propose an unsupervised method for semantic segmentation of paintings using domain adaptation. Our approach creates a training set of pseudo‐paintings in specific artistic styles by using style‐transfer on the PASCAL VOC 2012 dataset, and then applies domain confusion between PASCAL VOC 2012 and real paintings. These two steps build on a new dataset we gathered called DRAM (Diverse Realism in Art Movements) composed of figurative art paintings from four movements, which are highly diverse in pattern, color, and geometry. To segment new paintings, we present a composite multi‐domain adaptation method that trains on each sub‐domain separately and composes their solutions during inference time. Our method provides better segmentation results not only on the specific artistic movements of DRAM, but also on other, unseen ones. We compare our approach to alternative methods and show applications of semantic segmentation in art paintings. The code and models for our approach are publicly available at: https://github.com/Nadavc220/SemanticSegmentationInArtPaintings.
Figure 1: Examples of results of our method for semantic segmentation of artistic paintings in various styles -each color represents a class. We use unsupervised domain adaptation on the DRAM (Diverse Realism in Art Movements) dataset we collected. DRAM contains figurative paintings from the Realism, Impressionism, Post-Impressionism and Expressionism art movements (the first two rows). The third row shows examples of segmentation of artistic styles which were unseen during training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.