Özet: Alüminyum ve alaşımları düşük yoğunluk, yüksek spesifik mukavemet, korozyon dayanımı, yüksek elektriksel ve ısıl iletkenlik özelliklerinden dolayı otomotiv, havacılık ve uzay, savunma sanayilerinde yaygın olarak kullanılmaktadırlar. Genellikle malzemelerin mukavemetlerinin artırılması bakımından, alüminyum alaşımlarında ısıl işlem ve deformasyon prosesleri uygulanmaktadır. Magnezyum ve bakır alaşım elementlerinin ilavesi ile alüminyum alaşımlarında kayda değer bir mukavemet artışı sağlanabilmektedir. Malzemelerin özellikleri; malzemelerin kimyasal kompozisyonlarına, proseslerine ve mikroyapılarına bağlı olarak değişmektedir. Bu modelleme ve simülasyon çalışmasında, Al-10Si-xMg alaşımında değişen % ağırlıkça Mg oranlarının malzeme üzerindeki etkisi incelenmiş ve CALPHAD metodolojisinin kullanımı ile termodinamik analizleri gerçekleştirilmiştir. Modelleme ve simülasyon çalışmalarında Thermo-Calc yazılımı 2021a versiyonundaki TCAL7.1 alüminyum veri tabanı kullanılmıştır. Al-10Si-xMg alaşımında değişen % ağırlıkça Mg oranının liküdüs, solidüs ve Al-Si alaşımlarında görülen ötektik reaksiyon sıcaklıklarına etkisi incelenmiştir. Ayrıca ısıl işlem ile mukavemet artışı sağlayan Mg2Si çökeltilerinin oluşum sıcaklıkları ve miktarları belirlenerek Türkçe literatüre katkı sağlanması düşünülmüştür.
As a material forming method, cold forging is preferred due to the reasons like absence of a heating step and high surface quality. Recently, the finite element method (FEM) has received growing attention for controlling and predicting final material properties for cold forging applications. FEM combines microstructure evolution models with failure criteria, thus providing solutions to complicated problems in the modern cold forging industry. The fastener industry extensively utilizes cold forging, in which manganese and boron-containing steels like 27MnB4 can be formed to obtain high mechanical properties. The current study investigates the effect of two different heat treatments, namely softening and spheroidizing annealing, on the formability of 27MnB4 bolts. Softwares such as Thermo-Calc 2022a and Forge NxT 3.2 were used to predict the microstructure of the wire rod and evaluate the cold forming process of the same rod under two different heat treatment conditions. Therefore, the current study also provides a relationship between microstructural features and the cold formability of 27MnB4 steel. The microstructure of 27MnB4 is predicted by CCT diagrams. The predicted microstructure corresponds to the microstructure of 27MnB4 samples taken from the production line. In addition, temperature, von Mises stress, and equivalent strain distributions for 27MnB4 steel in the hot rolled state were calculated higher than in annealed states due to the differences in the microstructure. These results demonstrate that computational material engineering methods and simulation techniques could be practical tools for cold forming processes.
Dual phase (DP) steels are rapidly becoming more and more popular for automotive applications. They offer a weight reduction with a combination of energy absorption for crash zones. Rails, reinforcements, back panels, cross members, and pillars can be given as application examples. DP steels microstructure consists of a soft ferrite matrix with hard martensite islands. The hard martensite islands provide strength while the ductile ferrite provides formability. The strength level of DP steel is related to the amount of martensite in the microstructure, and the martensite amount can be arranged via intercritical annealing. In this work, thermodynamic analysis of St52 steel was carried out with Thermo-Calc software. A1 and A3 temperatures were determined by calculating the temperature-dependent phase fractions. Intercritical annealing temperatures were determined according to the calculated critical temperatures (A1 and A3). The intercritical annealing process was modelled by using Simheat NxT software. In this modelling and simulation work, the effect of intercritical annealing temperature on the final microstructure and hardness of DP steel was investigated.
Al-Si-Mg alaşımlarında çökelti sertleşmesi yöntemi ile mukavemet artışı sağlanabilmektedir. Çökelti sertleşmesi prosesinde sıcaklık ve süre önemli bir parametredir. Su verme prosesi sonrasında, aşırı doymuş yapının belirli bir sıcaklıkta belli bir süre tutulması ile denge dışı çökeltiler oluşturularak mukavemet artışı sağlanmaktadır. Bu modelleme ve simülasyon çalışmasında Al-7Si-0.3Mg alaşımının Thermo-Calc yazılımı ile sıcaklığa bağlı faz fraksiyonları analiz edilmiştir. Alaşım içerisindeki fazların kritik dönüşüm sıcaklıkları hesaplanmıştır. Ayrıca TC-Prisma yazılımı ile 180°C’de farklı yaşlandırma süreleri (2, 4, 6 ve 8 saat) ile çökelti boyutu ve mukavemet analizleri yapılmıştır. Böylece alüminyum alaşımlarına sık uygulanan ısıl işlem prosesinin modelleme ve simülasyon çalışmaları ile analizleri yapılarak proses dizaynı konusunda öngörüler ortaya konmuştur. Çalışmanın çıktıları ile Türkçe literatüre katkı sunulması amaçlanmıştır.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.