Liver cancer has a tendency to develop asymptomatically in patients, so most patients are diagnosed at a later stage. Accumulating evidence implicates that liver tumour-initiating cells (TICs) as being responsible for liver cancer initiation and recurrence. However, the molecular mechanism of liver TIC self-renewal is poorly understood. Here we discover that a long noncoding RNA (lncRNA) termed LncSox4 is highly expressed in hepatocellular carcinoma (HCC) tissues and in liver TICs. We find that LncSox4 is required for liver TIC self-renewal and tumour initiation. LncSox4 interacts with and recruits Stat3 to the Sox4 promoter to initiate the expression of Sox4, which is highly expressed in liver TICs and required for liver TIC self-renewal. The expression level of Sox4 correlates with HCC development, clinical severity and prognosis of patients. Altogether, we find that LncSox4 is highly expressed in liver TICs and is required for their self-renewal.
Indoleamine 2,3-dioxygenase 1 (IDO1) is a heme enzyme that catalyzes the oxidation of L-tryptophan. Functionally, IDO1 has played a pivotal role in cancer immune escape via catalyzing the initial step of the kynurenine pathway, and overexpression of IDO1 is also associated with poor prognosis in various cancers. Currently, several small-molecule candidates and peptide vaccines are currently being assessed in clinical trials. Furthermore, the “proteolysis targeting chimera” (PROTAC) technology has also been successfully used in the development of IDO1 degraders, providing novel therapeutics for cancers. Herein, we review the biological functions of IDO1, structural biology and also extensively summarize medicinal chemistry strategies for the development of IDO1 inhibitors in clinical trials. The emerging PROTAC-based IDO1 degraders are also highlighted. This review may provide a comprehensive and updated overview on IDO1 inhibitors and their therapeutic potentials.
Surgical stress and inflammatory response induce the release of catecholamines and PGs, which may be key factors in facilitating cancer recurrence through immunosuppression. Animal studies have suggested the efficacy of perioperative blockades of catecholamines and PGs in reducing immunosuppression. In this study, to our knowledge, we present the first report of the effects of perioperative propranolol and/or parecoxib on peripheral regulatory T cells (Tregs) in breast cancer patients. Patients were randomly assigned to control, propranolol, parecoxib, and propranolol plus parecoxib groups. We demonstrated that levels of circulating epinephrine, norepinephrine, and PGE2 increased in response to surgery. Meanwhile, peripheral FOXP3 mRNA level and Treg frequencies were elevated on postoperative day 7. Propranolol administration, rather than parecoxib, attenuated such elevation of Tregs, indicating the critical roles for catecholamines in surgery-induced promotion of Tregs. Besides, propranolol plus parecoxib treatment demonstrated no additive or synergistic effects. Furthermore, a study of Treg activity on CD4+ T cell responses to specific tumor Ags was performed in the control and propranolol groups. Propranolol abrogated the increased Treg activity and accompanying suppression of CD4+ T cell responses after surgery. Finally, we conducted ex vivo experiments on the effects of varying concentrations of epinephrine and/or propranolol on Treg proliferation over PBMCs from breast cancer patients, to provide further direct evidence strengthening our clinical observations. Epinephrine markedly promoted Treg proliferation, whereas propranolol prevented such enhancement effect. In conclusion, our study highlights beneficial roles for propranolol in inhibiting Treg responses in vivo and in vitro, and demonstrates that propranolol could alleviate surgical stress–induced elevation of Tregs in breast cancer patients.
BackgroundImmunotherapy has achieved remarkable advances via a variety of strategies against tumor cells that evade immune surveillance. As important innate immune cells, macrophages play important roles in maintaining homeostasis, preventing pathogen invasion, resisting tumor cells and promoting adaptive immune response. CD47 is found to be overexpressed on tumor cells and act as a don’t eat me’ signal, which contributes to immune evasion. Macrophages mediated phagocytosis via blockade CD47/SIRPα (signal regulatory protein alpha) interaction was proved to induce effective antitumor immune response.MethodsA novel peptide pep-20, specifically targeting CD47 and blocking CD47/SIRPα interaction, was identified via high-throughput phage display library bio-panning. The capability to enhance the macrophage-mediated phagocytosis activities and antitumor effects of pep-20 were investigated. The mechanism of pep-20 to induce T-cell response was explored by ex vivo analysis and confirmed via macrophage depleting strategy. The structure-activity relationship and D-amino acid substitution of pep-20 were also studied. The antitumor effects and mechanism of a proteolysis resistant D-amino acid derivate pep-20-D12 combined with irradiation (IR) were also investigated.ResultsPep-20 showed remarkable enhancement of macrophage-mediated phagocytosis to both solid and hematologic tumor cells in vitro, and inhibited tumor growth in immune-competent tumor-bearing mice. Furthermore, pep-20 promoted macrophages to mobilize the antitumor T-cell response with minimal toxicity. Furthermore, systemic administration of the derivate pep-20-D12 showed robust synergistic antitumor efficacy in combination with IR.ConclusionIn summary, these results demonstrated that CD47/SIRPα blocking peptides, pep-20 and its derivate, could serve as promising candidates to promote macrophages-mediated phagocytosis and immune response in cancer immunotherapy.
The low response rate and adaptive resistance of PD‐1/PD‐L1 blockade demands the studies on novel therapeutic targets for cancer immunotherapy. We discovered that a novel immune checkpoint TIGIT expressed higher than PD‐1 in many tumors especially anti‐PD‐1 resistant tumors. Here, mirror‐image phage display bio‐panning was performed using the d‐enantiomer of TIGIT synthesized by hydrazide‐based native chemical ligation. d‐peptide DTBP‐3 was identified, which could occupy the binding interface and effectively block the interaction of TIGIT with its ligand PVR. DTBP‐3 showed proteolytic resistance, tumor tissue penetrating ability, and significant tumor suppressing effects in a CD8+ T cell dependent manner. More importantly, DTBP‐3 could inhibit tumor growth and metastasis in anti‐PD‐1 resistant tumor model. This is the first d‐peptide targeting TIGIT, which could serve as a potential candidate for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.