A principal goal of cancer nanomedicine is to deliver therapeutics effectively to cancer cells within solid tumors. However, there are a series of biological barriers that impede nanomedicine from reaching target cells. Here, we report a stimuli-responsive clustered nanoparticle to systematically overcome these multiple barriers by sequentially responding to the endogenous attributes of the tumor microenvironment. The smart polymeric clustered nanoparticle (iCluster) has an initial size of ∼100 nm, which is favorable for long blood circulation and high propensity of extravasation through tumor vascular fenestrations. Once iCluster accumulates at tumor sites, the intrinsic tumor extracellular acidity would trigger the discharge of platinum prodrug-conjugated poly(amidoamine) dendrimers (diameter ∼5 nm). Such a structural alteration greatly facilitates tumor penetration and cell internalization of the therapeutics. The internalized dendrimer prodrugs are further reduced intracellularly to release cisplatin to kill cancer cells. The superior in vivo antitumor activities of iCluster are validated in varying intractable tumor models including poorly permeable pancreatic cancer, drug-resistant cancer, and metastatic cancer, demonstrating its versatility and broad applicability.nanomedicine | particle size | tumor penetration | tumor extracellular pH | stimuli responsive
The currently low delivery efficiency and limited tumor penetration of nanoparticles remain two major challenges of cancer nanomedicine. Here, we report a class of pH-responsive nanoparticle superstructures with ultrasensitive size switching in the acidic tumor microenvironment for improved tumor penetration and effective in vivo drug delivery. The superstructures were constructed from amphiphilic polymer directed assembly of platinum-prodrug conjugated polyamidoamine (PAMAM) dendrimers, in which the amphiphilic polymer contains ionizable tertiary amine groups for rapid pH-responsiveness. These superstructures had an initial size of ∼80 nm at neutral pH (e.g., in blood circulation), but once deposited in the slightly acidic tumor microenvironment (pH ∼6.5-7.0), they underwent a dramatic and sharp size transition within a very narrow range of acidity (less than 0.1-0.2 pH units) and dissociated instantaneously into the dendrimer building blocks (less than 10 nm in diameter). This rapid size-switching feature not only can facilitate nanoparticle extravasation and accumulation via the enhanced permeability and retention effect but also allows faster nanoparticle diffusion and more efficient tumor penetration. We have further carried out comparative studies of pH-sensitive and insensitive nanostructures with similar size, surface charge, and chemical composition in both multicellular spheroids and poorly permeable BxPC-3 pancreatic tumor models, whose results demonstrate that the pH-triggered size switching is a viable strategy for improving drug penetration and therapeutic efficacy.
c-Myc (Myc) plays an important role in normal liver development and tumorigenesis. We show here that Myc is pathologically activated in and essential for promoting human hepatocellular carcinoma (HCC). Myc induces HCC through a novel, microRNA (miRNA)-mediated feedback loop comprised of miR-148a-5p, miR-363-3p, and ubiquitin-specific protease 28 (USP28). Myc directly binds to conserved regions in the promoters of the two miRNAs and represses their expression. miR-148a-5p directly targets and inhibits Myc, whereas miR-363-3p destabilizes Myc by directly targeting and inhibiting USP28. Inhibition of miR-148a-5p or miR-363-3p induces hepatocellular tumorigenesis by promoting G1 to S phase progression, whereas activation of them has the opposite effects. The Myc-miRNA feedback loop is dysregulated in human HCC. Conclusion: These results define miR-148a-5p and miR-363-3p as negative regulators of Myc, thus revealing their heretofore unappreciated roles in hepatocarcinogenesis.
miR-148a has been shown to regulate inflammation, immunity and the growth of certain tumors, but its roles in colitis and colorectal tumorigenesis remain largely undetermined. Here we found miR-148a-deficient mice to be more susceptible to colitis and colitis-associated tumorigenesis. Both were associated with increased nuclear factor κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling. Bone marrow- and non-bone marrow-derived miR-148a contributed to colitis and colitis-associated tumorigenesis. miR-148a loss of heterozygosity exacerbated Apc colon and small intestinal spontaneous tumor development. Restoring miR-148a expression prevented both spontaneous and carcinogen-induced colon tumor development. miR-148a was downregulated in human inflammatory bowel disease (IBD) and colorectal cancer patient tissues. This correlated with a high degree of miR-148a promoter methylation mediated by a complex comprised of P65 and DNA methyltransferase 3 alpha (DNMT3A). miR-148a directly targets several well-accepted upstream regulators of NF-κB and STAT3 signaling, including GP130, IKKα, IKKβ, IL1R1 and TNFR2, which leads to decreased NF-κB and STAT3 activation in macrophages and colon tissues. Our findings reveal that miR-148a is an indirect tumor suppressor that modulates colitis and colitis-associated tumorigenesis by suppressing the expression of signaling by NF-κB and STAT3 and their pro-inflammatory consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.