Paper waste in the mockups design with regular, irregular, and amorphous patterns is a critical problem in digital printing presses. Paper waste reduction directly impacts production costs, generating business and environmental benefits. This problem can be mapped to the two-dimensional irregular bin-packing problem. In this paper, an iterated local search algorithm using a novel neighborhood structure to detect overlaps between amorphous shapes is introduced. This algorithm is used to solve the paper waste problem, modeled as one 2D irregular bin-packing problem. The experimental results show that this approach works efficiently and effectively to detect and correct the overlaps between regular, irregular, and amorphous figures.
This work presents an optimization proposal to better the computational convergence time in convection-diffusion and driven-cavity problems by applying a simulated annealing (SA) metaheuristic, obtaining optimal values in relaxation factors (RF) that optimize the problem convergence during its numerical execution. These relaxation factors are tested in numerical models to accelerate their computational convergence in a shorter time. The experimental results show that the relaxation factors obtained by the SA algorithm improve the computational time of the problem convergence regardless of user experience in the initial low-quality RF proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.