Dendritic cells (DCs) have the capacity to initiate immune responses, but it has been postulated that they may also be involved in inducing peripheral tolerance. To examine the function of DCs in the steady state we devised an antigen delivery system targeting these specialized antigen presenting cells in vivo using a monoclonal antibody to a DC-restricted endocytic receptor, DEC-205. Our experiments show that this route of antigen delivery to DCs is several orders of magnitude more efficient than free peptide in complete Freund's adjuvant (CFA) in inducing T cell activation and cell division. However, T cells activated by antigen delivered to DCs are not polarized to produce T helper type 1 cytokine interferon γ and the activation response is not sustained. Within 7 d the number of antigen-specific T cells is severely reduced, and the residual T cells become unresponsive to systemic challenge with antigen in CFA. Coinjection of the DC-targeted antigen and anti-CD40 agonistic antibody changes the outcome from tolerance to prolonged T cell activation and immunity. We conclude that in the absence of additional stimuli DCs induce transient antigen-specific T cell activation followed by T cell deletion and unresponsiveness.
Argonaute proteins associate with small RNAs that guide mRNA degradation, translational repression, or a combination of both. The human Argonaute family has eight members, four of which (Ago1 through Ago4) are closely related and coexpressed in many cell types. To understand the biological function of the different Ago proteins, we set out to determine if Ago1 through Ago4 are associated with miRNAs as well as RISC activity in human cell lines. Our results suggest that miRNAs are incorporated indiscriminately of their sequence into Ago1 through Ago4 containing microRNPs (miRNPs). Purification of the FLAG/HA-epitope-tagged Ago containing complexes from different human cell lines revealed that endonuclease activity is exclusively associated with Ago2. Exogenously introduced siRNAs also associate with Ago2 for guiding target RNA cleavage. The specific role of Ago2 in guiding target RNA cleavage was confirmed independently by siRNA-based depletion of individual Ago members in combination with a sensitive positive-readout reporter assay.
Chromosomal translocation requires formation of paired double strand DNA breaks (DSBs) on heterologous chromosomes. One of the most well characterized oncogenic translocations juxtaposes c-myc and the immunoglobulin heavy chain locus (IgH) and is found in Burkitt’s lymphomas in humans and plasmacytomas in mice. DNA breaks in IgH leading to c-myc/IgH translocations are created by activation induced cytidine deaminase (AID) during antibody class switch recombination or somatic hypermutation. However, the source of DNA breaks at c-myc is not known. Here we provide evidence for the c-myc promoter region being required in targeting AID-mediated DNA damage to produce DSBs in c-myc that lead to c-myc/IgH translocations in primary B lymphocytes. Thus, in addition to producing somatic mutations and DNA breaks in antibody genes, AID is also responsible for the DNA lesions in oncogenes that are required for their translocation.
Multiple sclerosis (MS) is more common in western countries with diet being a potential contributing factor. Here we show that intermittent fasting (IF) ameliorated clinical course and pathology of the MS model, experimental autoimmune encephalomyelitis (EAE). IF led to increased gut bacteria richness, enrichment of the Lactobacillaceae, Bacteroidaceae, and Prevotellaceae families and enhanced antioxidative microbial metabolic pathways. IF altered T cells in the gut with a reduction of IL-17 producing T cells and an increase in regulatory T cells. Fecal microbiome transplantation from mice on IF ameliorated EAE in immunized recipient mice on a normal diet, suggesting that IF effects are at least partially mediated by the gut flora. In a pilot clinical trial in MS patients, intermittent energy restriction altered blood adipokines and the gut flora resembling protective changes observed in mice. In conclusion, IF has potent immunomodulatory effects that are at least partially mediated by the gut microbiome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.