IL-1 plays a major role in regulating inflammatory mediator production in wounds through a novel mechanism; by stimulating the production of multiple cytokines and chemokines, it impacts clinically important aspects of wound biology. These data suggest that administration of an IL-1 receptor antagonist within the perioperative period could decrease postsurgical wound pain.
Candida albicans is a fungal pathogen that causes severe disseminated infections that can be lethal in immunocompromised patients. Genetic factors are known to alter the initial susceptibility to and severity of C. albicans infection. We developed a next-generation computational genetic mapping program with advanced features to identify genetic factors affecting survival in a murine genetic model of hematogenous C. albicans infection. This computational tool was used to analyze the median survival data after inbred mouse strains were infected with C. albicans, which provides a useful experimental model for identification of host susceptibility factors. The computational analysis indicated that genetic variation within early classical complement pathway components (C1q, C1r, and C1s) could affect survival. Consistent with the computational results, serum C1 binding to this pathogen was strongly affected by C1rs alleles, as was survival of chromosome substitution strains. These results led to a combinatorial, conditional genetic model, involving an interaction between C5 and C1r/s alleles, which accurately predicted survival after infection. Beyond applicability to infectious disease, this information could increase our understanding of the genetic factors affecting susceptibility to autoimmune and neurodegenerative diseases.Genetic factors are known to alter susceptibility to and severity of Candida albicans infection in mice (1, 3, 22) and humans (42). Therefore, characterizing genetic factors affecting host susceptibility to C. albicans infection is of great importance. Since systemic candidiasis in mice closely resembles the human disease, inbred mouse strains provide a useful experimental model for identification of host susceptibility factors. Although virtually all organs are infected, the kidney is the major target, and the histopathology of infected lesions is similar in mice and humans. Mutations in several immune response genes have been associated with susceptibility to chronic mucocutaneous candidiasis in human families (14,17,36,48), and several have been verified in murine models. Differences in survival after hematogenous C. albicans infection among inbred mouse strains have been associated with complement factor 5 (Hc or C5) alleles (1, 2, 4, 34). A 2-bp deletion polymorphism at the 5Ј end of the C5 transcript shifts its reading frame and causes ϳ50% of inbred strains to be C5 protein deficient (54). Disseminated candidiasis is rapidly fatal in C5-deficient strains because of uncontrolled fungal proliferation in most organs (34). Although C5 alleles make an important contribution, several previous analyses indicated that there are other genetic factors that affect the severity of tissue damage or survival after C. albicans infection (2, 38). However, no one has yet been able to identify these other genetic factors.Since its inception in 2004, haplotype-based computational genetic mapping (HBCGM) (30) has been used to identify the genetic basis for many biomedical trait differences among inbred mou...
Interspecies differences in drug metabolism have made it difficult to use preclinical animal testing data to predict the drug metabolites or potential drug-drug interactions (DDIs) that will occur in humans. Although chimeric mice with humanized livers can produce known human metabolites for test substrates, we do not know whether chimeric mice can be used to prospectively predict human drug metabolism or a possible DDI. Therefore, we investigated whether they could provide a more predictive assessment for clemizole, a drug in clinical development for the treatment of hepatitis C virus (HCV) infection. Our results demonstrate, for the first time, that analyses performed in chimeric mice can correctly identify the predominant human drug metabolite before human testing. The differences in the rodent and human pathways for clemizole metabolism were of importance, because the predominant human metabolite was found to have synergistic anti-HCV activity. Moreover, studies in chimeric mice also correctly predicted that a DDI would occur in humans when clemizole was coadministered with a CYP3A4 inhibitor. These results demonstrate that using chimeric mice can improve the quality of preclinical drug assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.