Bacteria-Responsive Multifunctional Nanogel: We developed a bacteria-responsive multifunctional nanogel for targeted antibiotic delivery, in which bacterial enzymes are utilized to trigger antibiotic release by degrading the polyphosphoester core. The mannosylated nanogel preferentially delivers drugs to macrophages and leads to drug accumulation at bacterial infection sites through macrophage transport. This nanogel provides macrophage targeting and lesion site-activatable drug release properties, which enhances bacterial growth inhibition.
Nanoparticles with strong optical absorption at near-infrared (NIR) wavelengths can efficiently convert optical energy into thermal energy, and have shown multimodality in biological and biomedical applications. In this work, a new type of thermal ablation-enhanced transdermal delivery methodology is developed based on hollow copper sulfide nanoparticles (HCuSNPs) with intense photothermal coupling effects. Application of nanosecond-pulsed NIR laser allows rapid heating of the nanoparticles and instantaneous heat conduction. This provides very short periods of time but extremely high temperatures (estimated over 100°C) in local regions, with focused thermal ablation of the stratum corneum. Because the discontinuous light from the pulsed laser minimized heat accumulation, the average temperature of the irradiated skin area only increases to ~40–50°C. The extent of thermal ablation of skin, i.e. removal of the stratum corneum, viable epidermis, or the dermis, can be controlled by adjusting the laser power. The skin disruption by HCuSNP-mediated photothermal ablation significantly increases the permeability of macromolecule drugs such as human growth hormone, providing effective and controlled percutaneous delivery. This technique offers compelling opportunities to overcome low oral bioavailability of small- and large-molecular-weight drugs, avoiding the pain and inconvenience of long-term s.c. injections while enabling sustained and controlled delivery.
A new three-step photo-oxidative degradation mechanism of MAPbI3 is proposed. A strategy for protecting MAPbI3 by 2-(4-fluorophenyl)propan-2-amine modification is designed.
Pattern recognition receptors (PRRs) and their signaling pathways have essential roles in recognizing various components of pathogens as well as damaged cells and triggering inflammatory responses that eliminate invading microorganisms and damaged cells. The zebrafish relies heavily on these primary defense mechanisms against pathogens. Here, we review the major PRR signaling pathways in the zebrafish innate immune system and compare these signaling pathways in zebrafish and humans to reveal their evolutionary relationship and better understand their innate immune defense mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.