Elevated plasma free fatty acid (FFA) levels in obesity may play a pathogenic role in the development of insulin resistance. However, molecular mechanisms linking FFA to insulin resistance remain poorly understood. Oxidative stress acts as a link between FFA and hepatic insulin resistance. NADPH oxidase 3 (NOX3)-derived reactive oxygen species (ROS) may mediate the effect of TNF-␣ on hepatocytes, in particular the drop in cellular glycogen content. In the present study, we define the critical role of NOX3-derived ROS in insulin resistance in db/db mice and HepG2 cells treated with palmitate. The db/db mice displayed increased serum FFA levels, excess generation of ROS, and upregulation of NOX3 expression, accompanied by increased lipid accumulation and impaired glycogen content in the liver. Similar results were obtained from palmitate-treated HepG2 cells. The exposure of palmitate elevated ROS production and NOX3 expression and, in turn, increased gluconeogenesis and reduced glycogen content in HepG2 cells. We found that palmitate induced hepatic insulin resistance through JNK and p38 MAPK pathways, which are rescued by siRNA-mediated NOX3 reduction. In conclusion, our data demonstrate a critical role of NOX3-derived ROS in palmitate-induced insulin resistance in hepatocytes, indicating that NOX3 is the predominant source of palmitate-induced ROS generation and that NOX3-derived ROS may drive palmitate-induced hepatic insulin resistance through JNK and p38 MAPK pathways.
Doxorubicin (adriamycin), an anthracycline antibiotic, is commonly used to treat many types of solid and hematological malignancies. Unfortunately, clinical usage of doxorubicin is limited due to the associated acute and chronic cardiotoxicity. Previous studies demonstrated that Astragalus polysaccharide (APS), the extracts of Astragalus membranaceus, had strong anti-tumor activities and anti-inflammatory effects. However, whether APS could mitigate chemotherapy-induced cardiotoxicity is unclear thus far. We used a doxorubicin-induced neonatal rat cardiomyocyte injury model and a mouse heart failure model to explore the function of APS. GFP-LC3 adenovirus-mediated autophagic vesicle assays, GFP and RFP tandemly tagged LC3 (tfLC3) assays and Western blot analyses were performed to analyze the cell function and cell signaling changes following APS treatment in cardiomyocytes. First, doxorubicin treatment led to C57BL/6J mouse heart failure and increased cardiomyocyte apoptosis, with a disturbed cell autophagic flux. Second, APS restored autophagy in doxorubicin-treated primary neonatal rat ventricular myocytes and in the doxorubicin-induced heart failure mouse model. Third, APS attenuated doxorubicin-induced heart injury by regulating the AMPK/mTOR pathway. The mTOR inhibitor rapamycin significantly abrogated the protective effect of APS. These results suggest that doxorubicin could induce heart failure by disturbing cardiomyocyte autophagic flux, which may cause excessive cell apoptosis. APS could restore normal autophagic flux, ameliorating doxorubicin-induced cardiotoxicity by regulating the AMPK/mTOR pathway.
Aim: To investigate the effects of Astragalus polysaccharides (APS) on tumor necrosis factor (TNF)-α-induced inflammatory reactions in human umbilical vein endothelial cells (HUVECs) and to elucidate the underlying mechanisms. Methods: HUVECs were treated with TNF-α for 24 h. The amounts of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined with Western blotting. HUVEC viability and apoptosis were detected using cell viability assay and Hoechst staining, respectively. Reactive oxygen species (ROS) production was measured by DHE staining. Monocyte and HUVEC adhesion assay was used to detect endothelial cell adhesive function. NF-κB activation was detected with immunofluorescence. Results: TNF-α (1-80 ng/mL) caused dose-and time-dependent increases of ICAM-1 and VCAM-1 expression in HUVECs, accompanied by significant augmentation of IκB phosphorylation and NF-κB translocation into the nuclei. Pretreatment with APS (10 and 50 µg/mL) significantly attenuated TNFα-induced upregulation of ICAM-1, VCAM-1, and NF-κB translocation. Moreover, APS significantly reduced apoptosis, ROS generation and adhesion function damage in TNF-α-treated HUVECs. Conclusion: APS suppresses TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation in HUVECs. The results suggest that APS may be used to treat and prevent endothelial cell injury-related diseases.
Earlier studies have shown that rhein, one of the major bioactive constituents of the rhizome of rhubarb, inhibits the proliferation of various human cancer cells. However, because of its water insolubility, the antitumor efficacy of rhein is limited in vivo. In this study, we studied the antitumor activity of rhein lysinate (the salt of rhein and lysine and easily dissolving in water) and its mechanism. Inhibition of breast cancer cell proliferation was determined by MTT assay and the mechanism of action of rhein lysinate was investigated by western blot analysis. The therapeutic efficacy of rhein lysinate was evaluated by human cancer xenografts in athymic nude mice. Rhein lysinate inhibited the proliferation of breast cancer cells (MCF-7, SK-Br-3, and MDA-MB-231). The IC50 values were 95, 80, and 110 micromol/l, respectively. Rhein lysinate inhibited the phosphorylation of epidermal growth factor receptor, MEK, and ERK with or without EGF stimulation. It also inhibited tumor growth and enhanced the therapeutic effect of Taxol on MCF-7 xenografts in athymic mice. Rhein lysinate inhibited the phosphorylation of epidermal growth factor receptor and MAPK signal pathway. These results suggest that rhein lysinate might be useful as a modulation agent in cancer chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.