BackgroundArboviral disease transmitted by Aedes albopictus such as dengue fever is an important threat to human health. Pyrethroid resistance raises a great challenge for mosquito control. A systematic assessment of Ae. albopictus resistance status in China is urgently needed, and the study of correlation between pyrethroid resistance and knockdown resistance (kdr) mutations would provide information to guide the control of the Ae. albopictus vector.MethodsFive field populations of Ae. albopictus were collected from Jinan (JN), Hangzhou (HZ), Baoshan (BS), Yangpu (YP) and Haikou (HK), China in 2017. Insecticide-impregnated papers were prepared with four pyrethroid chemicals, deltamethrin, permethrin, beta-cypermethrin and lambda-cyhalothrin. The susceptibility of Ae. albopictus to pyrethroids was tested by the WHO tube assay. Kdr mutations were identified by PCR and sequencing. Moreover, the correlation analysis between kdr alleles and pyrethroid resistance was performed.ResultsAll five populations of Ae. albopictus showed resistance to four pyrethroid insecticides. One kdr mutant allele at codon 1532 and three at 1534 were detected with frequency of 5.33% (I1532T), 44.20% (F1534S), 1.83% (F1534 L) and 0.87% (F1534C), respectively. Both 1532 and 1534 mutation mosquitoes were found in the BS and YP populations. Allele I1532T was negatively correlated with deltamethrin resistance phenotype (OR < 1), while F1534S mutation was positively correlated with deltamethrin and permethrin resistance (OR > 1).ConclusionsThe five field populations of Ae. albopictus adults were all resistant to deltamethrin, permethrin, beta-cypermethrin and lambda-cyhalothrin. Mutant F1534S was clearly associated with pyrethroid resistance phenotype in Ae. albopictus and this could be developed as a molecular marker to monitor the pyrethroid resistance problem in China.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0471-y) contains supplementary material, which is available to authorized users.
BackgroundAedes albopictus is distributed widely in China, as a primary vector of Dengue fever and Chikungunya fever in south of China. Chemical insecticide control is one of the integrated programmes to prevent mosquito-borne diseases. Long-term applications of pyrethroids have resulted in the development of resistance in Ae. albopictus populations in China. However, the susceptibility of Ae. albopictus to pyrethroids in Hainan Island was unclear. Knockdown resistance (kdr), caused by point mutations in the VGSC gene, is one of the mechanisms that confer resistance to DDT and pyrethroids. This study was to investigate the resistance level of Ae. albopictus populations in Haikou City to three pyrethroid insecticides, and elucidate the relationship between the resistant phenotype and kdr mutations.MethodsThe Aedes albopictus samples were collected in Xinbu Island (XI), Longtang Town (LT), Shishan Town (ST), Baishamen Park (BP), and Flower Market (FM) from Haikou City, Hainan Island, China. The larval susceptibility to deltamethrin, permethrin and beta-cypermethrin was tested by larval bioassays, and adult susceptibility to deltamethrin and DDT was determined by adult bioassays. The degree of resistance was determined by resistance ratio value (RR50 > 3) for larvae and by mortality for adult. The kdr alleles at codon 1534 of the VGSC gene were genotyped. The relationship between kdr genotypes and resistant phenotypes was analyzed by Chi-square test.ResultsOut of five populations, assessed by larval bioassays, XI was susceptible to deltamethrin and permethrin; LT was susceptible to permethrin and beta-cypermethrin; and ST was susceptible to permithrin. FM and BP both were resistant to all of the three pyrethroids, and FM showed the highest degree of resistance, with RR50 values from 65.17 to 436.36. A total of 493 individuals from the larval bioassays were genotyped for kdr alleles. Five alleles were detected, including two wildtype alleles, TTC(F) (67.04 %) and TTT(F) (0.41 %), and three mutant alleles, TGC(C) (0.30 %), TCC(S) (31.54 %) and TTG(L) (0.71 %). There was a clear correlation between mutant alleles (or F1534S) and resistant phenotypes (P < 0.01).ConclusionTwo novel kdr mutant alleles F1534S and F1534L were detected in the pyrethroid resistant populations of Ae. albopictus in Haikou Hainan, China. For the first time, the mutant F1534S was associated with pyrethroid resistance in Ae. albopictus.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0125-x) contains supplementary material, which is available to authorized users.
The incidence of hemorrhagic fever with renal syndrome (HFRS) in Qingdao, China was three times higher than that of the average national level. Here we characterized the epidemiology, ecological determinants and pathogen evolution of HFRS in Qingdao during 2007–2015. In this longitudinal study, a total of 1846 HFRS patients and 41 HFRS-related deaths were reported. HFRS in Qingdao peaked once a year in the fourth quarter. We built a time series generalized additive model, and found that meteorological factors in the previous quarter could accurately predict HFRS occurrence. To explore how meteorological factors influenced the epidemic of HFRS, we analyzed the relationship between meteorological factors and hantavirus-carrying states of the hosts (including rodents and shrews). Comprehensive analysis showed humidity was correlated to high host densities in the third quarter and high hantavirus-carrying rates of animal hosts in the third to fourth quarters, which might contribute to HFRS peak in the fourth quarter. We further compared the L segments of hantaviruses from HFRS patients, animal hosts and ectoparasites. Phylogenetic analysis showed that hantaviruses in gamasid and trombiculid mites were the same as those from the hosts. This indicated mites also contributed to the transmission of hantavirus. Furthermore, Hantaan virus from HFRS patients, hosts and mites in Qingdao formed a distinct phylogenetic cluster. A new clade of Seoul virus was also identified in the hosts. Overall, meteorological factors increase HFRS incidence possibly via facilitating hosts’ reproduction and consequent mite-mediated hantavirus transmission. New hantavirus subtypes evolved in Qingdao represent new challenges of fighting against HFRS.
BackgroundAnopheles sinensis has become an important malaria vector in China. The long-term extensive utilization of pyrethroids for ITNs and IRS for mosquito control in the last three decades has resulted in the occurrence of resistant An. sinensis populations in many regions. Knockdown resistance (kdr), caused by point mutations in the VGSC gene, is one of the mechanisms that confer resistance to DDT and pyrethroids. Recently, several investigations revealed the kdr occurrence in some An. sinensis populations, however, no kdr data were available earlier than 2009. A survey tracking the dynamics of the kdr mutations in past decades would provide invaluable information to understand how the kdr alleles spread in mosquito populations temporally and spatially.MethodsA survey was conducted on the kdr alleles at condon 1014 of the VGSC gene and their distributions in 733 specimens of An. sinensis and 232 specimens of the other eight member species of the Anopheles hyrcanus group that were collected from 17 provinces in China in 1996–2014.ResultsA total of three kdr alleles, TTT (F), TTG (F) and TGT (C) were detected, and TGT (C) and TTT (F) were already present in the specimens from Jiangsu and Shandong as early as 1997. The TTT (F) was the most frequent mutant allele, and largely distributed in central China, namely Shandong, Jiangsu, Anhui, Henan, Shanghai, Jiangxi and Hubei. When data were analysed in three time intervals, 1996–2001, 2005–2009, 2010–2014, the prevalence of kdr alleles increased progressively over time in the populations in central China. In contrast, the kdr alleles were less frequent in the samples from other regions, especially in Yunnan and Hainan, despite the documented presence of pyrethroid resistant populations in those regions. Interestingly, no mutant alleles were detected in all 232 specimens of eight other species in the An. hyrcanus group.ConclusionThe survey revealed that the kdr occurrence and accumulation in the An. sinensis populations were more frequent in central China than in the other regions, suggesting that the kdr mutations may contribute significantly to the pyrethroid resistance in the mosquitoes in central China.Electronic supplementary materialThe online version of this article (doi:10.1186/s12936-015-0644-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.