With the rapid development of high-speed railway (HSR) transportation in China, its impact on regional spatial patterns and shaping has become increasingly significant. This study took seven urban agglomerations in the Yellow River Basin as the research object, using the 2 h HSR access time in the Yellow River Basin to comparatively analyze the differences in HSR access in the urban agglomeration in the Yellow River Basin, and using the 3 h HSR access to central cities as the background to conduct regional division and overlapping space identification through cross-regional economic links, before finally selecting the overlapping city of Changzhi for long-term space development strategic planning. The main conclusions were as follows: First, the low-value area of HSR travel time in the Yellow River Basin urban agglomerations was biased toward the center of the urban agglomerations, while the peripheral areas were relatively high-value travel traffic circles, and the HSR travel time showed a circular spatial pattern characteristic of continuous expansion from the center to the peripheral areas. Four urban agglomerations in the upper reaches of the city achieved a 2 h access pattern within the urban agglomeration, whereas three urban agglomerations in the middle and lower reaches of the city only reached the 2 h access level in the center. Second, the Yellow River Basin was divided into six community spaces using the SLPA model based on the economic linkage between the central city and other cities, which were filtered by the 3 h access time from the central city to each city for HSR travel. Three of the six communities produced overlapping spaces, i.e., Community 3 and Community 4 produced overlapping spaces containing Linfen, Community 3 and Community 5 produced overlapping spaces containing Changzhi, Handan, and Xingtai, and Community 4 and Community 5 produced overlapping spaces containing Yuncheng and Sanmenxia. Third, the overlapping space of Changzhi City was selected as a case study for a visionary strategic planning outlook. Combining the geographic location characteristics and future development opportunities of Changzhi, we can try to transform a pass-through node like Changzhi into a hub node in the future, strengthening the gateway status and expanding the hinterland. According to the results of the research and analysis, policymakers can try to implement the expansion and renovation of HSR trunk lines, break the transportation bottlenecks in less developed areas, improve the coverage of the HSR network, and establish a “cross-urban agglomeration” cooperation and coordination mechanism.
With the gradual networking of inter-city relations and the increase in acute impact and chronic stress, the measurement of the resilience of urban network structures is particularly prominent. Based on the construction of the urban network by passenger train trips in the Yellow River Basin, this paper analyzes and assesses the characteristics of the structural resilience of the urban network, and probes into the network resilience and urban response under the circumstances of node failure and line failure in Zhengzhou. The main conclusions are as follows: (1) The urban network in the Yellow River Basin was clearly hierarchical, with a significant spatial distribution of “low in the north and high in the south”, and the overall characteristics of “robustness” in small areas and “fragility” in large areas. The network connection forms were diversified and open. The network transmission efficiency was high, and the edge cities depended on the core cities with prominent characteristics, and the risk load of regional core cities rose. (2) The network structure was “robust” as it maintained high operational efficiency and connectivity under random attacks. Under deliberate attacks, the city network operated efficiently with a small increase in connectivity before the 60% threshold, and after the threshold, the overall network started to split into many sub-networks, and the network fragmentation gradually increased until the network collapsed. (3) Zhengzhou node failure and line failure states in the Yellow River Basin urban network were resilient, in the sense that when suffering important nodes and lines going down it could still maintain good network operation efficiency, and the core nodes in the impact of natural disasters could adapt to the destructive nature of the network through the urban network structure self-regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.