Three-dimensional printing technologies exhibit tremendous potential in the advancing fields of tissue engineering and regenerative medicine due to the precise spatial control over depositing the biomaterial. Despite their widespread utilization and numerous advantages, the development of suitable novel biomaterials for extrusion-based 3D printing of scaffolds that support cell attachment, proliferation, and vascularization remains a challenge. Multi-material composite hydrogels present incredible potential in this field. Thus, in this work, a multi-material composite hydrogel with a promising formulation of chitosan/gelatin functionalized with egg white was developed, which provides good printability and shape fidelity. In addition, a series of comparative analyses of different crosslinking agents and processes based on tripolyphosphate (TPP), genipin (GP), and glutaraldehyde (GTA) were investigated and compared to select the ideal crosslinking strategy to enhance the physicochemical and biological properties of the fabricated scaffolds. All of the results indicate that the composite hydrogel and the resulting scaffolds utilizing TPP crosslinking have great potential in tissue engineering, especially for supporting neo-vessel growth into the scaffold and promoting angiogenesis within engineered tissues.
Graphic abstract
Objective To develop and externally validate a prognostic nomogram to predict overall survival (OS) in patients with resectable colon cancer. Methods Data for 50,996 patients diagnosed with non-metastatic colon cancer were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. Patients were assigned randomly to the training set (n = 34,168) or validation set (n = 16,828). Independent prognostic factors were identified by multivariate Cox proportional hazards regression analysis and used to construct the nomogram. Harrell’s C-index and calibration plots were calculated using the SEER validation set. Additional external validation was performed using a Chinese dataset (n = 342). Results Harrell’s C-index of the nomogram for OS in the SEER validation set was 0.71, which was superior to that using the 7th edition of the American Joint Committee on Cancer TNM staging (0.59). Calibration plots showed consistency between actual observations and predicted 1-, 3-, and 5-year survival. Harrell’s C-index (0.72) and calibration plot showed excellent predictive accuracy in the external validation set. Conclusions We developed a nomogram to predict OS after curative resection for colon cancer. Validation using the SEER and external datasets revealed good discrimination and calibration. This nomogram may help predict individual survival in patients with colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.