This paper investigates design, modelling, and test issues related to piezoelectric energy transducer. The model analyzes a rail-borne "seismic" energy harvester that is designed to generate electrical energy from local variations in rail acceleration. The energy harvester analyzed in this model consists of a piezoelectric PZT film clamped at one end to the rail with a tip mass mounted on its other end. It includes two sub-models in this paper: a vehicle-track interaction model considering vehicle travelling load; and a cantilevered piezoelectric beam model for the visualization of voltage and power profile and frequency response. Four rail irregularities (American 6th grade track spectrum, Chinese track spectrum, German high and low-disturbance track spectrum) are compared and implemented into the calculation script. The calculated results indicate a rail displacement of 0.2 mm to 0.8 mm. Vibration tests of the proposed rail-borne device are conducted; a hydraulic driven system with excitation force up to 140 kN is exploited to generate the realistic wheel-rail interaction force. The proposed rail-borne energy harvester is capable of energy harvesting at low-frequency (5 Hz to 7 Hz) and small railway vibration (0.2 mm to 0.4 mm rail displacement). The output power of 4.9 mW with a load impedance of 100 kOhm is achieved. The open circuit peak-peak voltage reaches 24.4 V at 0.2 mm/7 Hz/5 g wheel-rail excitation. A DC-DC buck converter is designed, which works at the resonance frequency of 23 Hz/5 g on a lab vibration rig, providing a 3.3 VDC output.
Capturing vibration energy of track structures using piezoelectric energy harvesters has attracted increasing attention for powering wireless sensor networks along railway line. To better use the vertical space below steel rail, a kind of piezoelectric tube stack energy harvesters is proposed in this paper, which can be placed at the bottom of the steel rail to harvest the vibration energy of the vertical displacement induced by the moving train. The harvester consists of a displacement transmission rod, a compression spring, a force transmission metal tube, a piezoelectric tube stack, a whole metal shell, screw bolts, and a wire hole. The advantage of this design is to fully combine the heights of the compression spring, the force transmission metal tube and the piezoelectric tube stack, which helps reduce the vertical height of the device and enables its wide application to a variety of tracks, including, ballast track, ballastless track, and steel-spring floating slab track. Energy harvesting performance of the developed piezoelectric tube stack energy harvester is investigated experimentally, which is consistent with the theoretical results of the simplified model of such a harvester reported. Effects of displacement amplitude, displacement frequency, spring stiffness, resistance, and key parameters of piezoelectric tube stack on the energy harvesting performance of the harvester are also discussed. The present study provides a new design concept for developing piezoelectric energy harvesters used in railway systems with the smaller vertical space below steel rail.
Although there are many reports demonstrating that thiobacillus denitrificans (TDN) may inhibit corrosion caused by sulfate-reducing bacteria (SRB), very little is known for the inhibition effect in crude petroleum. In this work, the inhibition effect of TDN on the corrosion of X70 pipeline steel caused by SRB in crude petroleum was studied. The optimum incubation condition of TDN was obtained by orthogonal experimentation. The growth characteristics of TDN and SRB in crude petroleum were reflected via analyzing the transformation of sulfur. The inhibition effect on corrosion of X70 pipeline steel in crude petroleum was analyzed by an X-ray energy dispersive spectrometer in conjunction with weight loss measurement. The results suggested that TDN could effectively inhibit SRBinvolved corrosion by biologically oxidizing sulfide to sulfate in crude petroleum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.