Human pose estimation localizes body keypoints to accurately recognizing the postures of individuals given an image. This step is a crucial prerequisite to multiple tasks of computer vision which include human action recognition, human tracking, human-computer interaction, gaming, sign languages, and video surveillance. Therefore, we present this survey article to fill the knowledge gap and shed light on the researches of 2D human pose estimation. A brief introduction is followed by classifying it as a single or multi-person pose estimation based on the number of people needed to be tracked. Then gradually the approaches used in human pose estimation are described before listing some applications and also flaws facing in pose estimation. Following that, a center of attention is given on briefly discussing researches with a significant effect on human pose estimation and examine the novelty, motivation, architecture, the procedures (working principles) of each model together with its practical application and drawbacks, datasets implemented, as well as the evaluation metrics used to evaluate the model. This review is presented as a baseline for newcomers and guides researchers to discover new models by observing the procedure and architecture flaws of existing researches.
With the current advancement in the Internet, there has been a growing demand for building intelligent and smart systems that can efficiently address the detection of health-related problems on social media, such as the detection of depression and anxiety. These types of systems, which are mainly dependent on machine learning techniques, must be able to deal with obtaining the semantic and syntactic meaning of texts posted by users on social media. The data generated by users on social media contains unstructured and unpredictable content. Several systems based on machine learning and social media platforms have recently been introduced to identify health-related problems. However, the text representation and deep learning techniques employed provide only limited information and knowledge about the different texts posted by users. This is owing to a lack of long-term dependencies between each word in the entire text and a lack of proper exploitation of recent deep learning schemes. In this paper, we propose a novel framework to efficiently and effectively identify depression and anxiety-related posts while maintaining the contextual and semantic meaning of the words used in the whole corpus when applying bidirectional encoder representations from transformers (BERT). In addition, we propose a knowledge distillation technique, which is a recent technique for transferring knowledge from a large pretrained model (BERT) to a smaller model to boost performance and accuracy. We also devised our own data collection framework from Reddit and Twitter, which are the most common social media sites. Finally, we employed word2vec and BERT with Bi-LSTM to effectively analyze and detect depression and anxiety signs from social media posts. Our system surpasses other state-of-the-art methods and achieves an accuracy of 98% using the knowledge distillation technique.
Unmanned Aerial Vehicles (UAVs) are abundantly becoming a part of society, which is a trend that is expected to grow even further. The quadrotor is one of the drone technologies that is applicable in many sectors and in both military and civilian activities, with some applications requiring autonomous flight. However, stability, path planning, and control remain significant challenges in autonomous quadrotor flights. Traditional control algorithms, such as proportional-integral-derivative (PID), have deficiencies, especially in tuning. Recently, machine learning has received great attention in flying UAVs to desired positions autonomously. In this work, we configure the quadrotor to fly autonomously by using agents (the machine learning schemes being used to fly the quadrotor autonomously) to learn about the virtual physical environment. The quadrotor will fly from an initial to a desired position. When the agent brings the quadrotor closer to the desired position, it is rewarded; otherwise, it is punished. Two reinforcement learning models, Q-learning and SARSA, and a deep learning deep Q-network network are used as agents. The simulation is conducted by integrating the robot operating system (ROS) and Gazebo, which allowed for the implementation of the learning algorithms and the physical environment, respectively. The result has shown that the Deep Q-network network with Adadelta optimizer is the best setting to fly the quadrotor from the initial to desired position.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.