During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production.
Recently, the human gene NOTCH1 has been found to be implicated in cancer cell metastasis and the maintenance of cancer stem cells. However, for breast cancer in particular, an association between NOTCH1 levels and metastasis has not been determined. In this study, we investigated the expression status and correlation of NOTCH1 with clinically important factors related to metastasis and the cancer stem cell marker ALDH1. NOTCH1 and ALDH1 levels in 115 tumor tissues from primary lesions were determined by immunohistochemical staining. Most tissues were stained positive for both NOTCH1 and ALDH1, and NOTCH1 positivity was significantly associated with ALDH1 levels. NOTCH1 levels were significantly associated with TNM stage, metastasis, and triple-negative breast cancer. Moreover, both univariate and multivariate regression analyses revealed that basal-like features and NOTCH1 positivity were associated with disease-free survival as independent predictors. These analyses indicated that breast cancer patients testing positive for NOTCH1 had shorter disease-free survival. Our findings suggest that NOTCH1 may be involved in metastasis and is closely correlated with breast cancer stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.