Ridesharing has been attracting increasing attention from both academia and industry. One of the challenges posed by the study of ridesharing is to identify the most valuable information for improving the ridesharing decisions taken by participants. Another challenge is to use harvesting techniques to extract specific types of travel-related information. Many methods have been developed by the community in order to solve these issues. However, due to a lack of information sharing between different transit authorities and the difficulty of identifying subjective perceptions of the experience of ridesharing, understanding and evaluating how social media data might support or obstruct goals for mobility, safety and environmental sustainability in ridesharing is a difficult task. In this survey, we first analyze the literature on ridesharing with a focus on the properties and model of service, and introduce a framework to describe the major components required for a ridesharing service. Then, we illustrate the potential value of information extracted from social media and present the rationale for harvesting travel-related data. Finally, we detail some possible directions and different approaches for using social media data, and highlight their assets and drawbacks.
Ridesharing has attracted increasing attention in recent years, and combines the flexibility and speed of private cars with the reduced cost of fixed-line systems to benefit alleviating traffic pressure. A major issue in ridesharing is the accurate assignment of passengers to drivers, and how to maximize the number of rides shared between people being assigned to different drivers has become an increasingly popular research topic. There are two major challenges facing ride-matching: scalability and sparsity. Here, we show that network embedding drives the optimal matches between drivers and riders. Contrary to existing approaches that merely depend on the proximity between passengers and drivers, we employ a heterogeneous network to learn the latent semantics from different choices in two types of ridesharing, and extract features in terms of user trajectories and sentiment. A novel framework for ridesharing, RShareForm, which encodes not only the objects but also a variety of semantic relationships between them, is proposed. This article extends the existing skip-gram model to incorporate meta-paths over a proposed heterogeneous network. It allows diverse features to be used to search for similar participants and then ranks them to improve the quality of ride-matching. Extensive experiments on a large-scale dataset from DiDi in Chengdu, China show that by leveraging heterogeneous network embedding with meta paths, RShareForm can significantly improve the accuracy of identifying the participants for ridesharing over existing methods, including both meta-path guided similarity search methods and variants of embedding methods. CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile computing;
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.