Credit card fraud detection (CCFD) is important for protecting the cardholder’s property and the reputation of banks. Class imbalance in credit card transaction data is a primary factor affecting the classification performance of current detection models. However, prior approaches are aimed at improving the prediction accuracy of the minority class samples (fraudulent transactions), but this usually leads to a significant drop in the model’s predictive performance for the majority class samples (legal transactions), which greatly increases the investigation cost for banks. In this paper, we propose a heterogeneous ensemble learning model based on data distribution (HELMDD) to deal with imbalanced data in CCFD. We validate the effectiveness of HELMDD on two real credit card datasets. The experimental results demonstrate that compared with current state-of-the-art models, HELMDD has the best comprehensive performance. HELMDD not only achieves good recall rates for both the minority class and the majority class but also increases the savings rate for banks to 0.8623 and 0.6696, respectively.
Accurately classifying the surrounding rock of tunnel face is essential. In this paper, we propose a machine learning-based automatic classification and dynamic prediction method of the surrounding rocks of tunnel face using the data monitored by a computerized rock drilling trolley based on the intelligent mechanized construction process for drilling and blasting tunnels. This method provides auxiliary support for the intelligent decision of dynamic support at the construction site. First, this method solves the imbalance in the classification of the surrounding rock samples by constructing the Synthetic Minority Oversampling Technique (SMOTE) algorithm using 500 samples of drilling parameters covering different levels and lithologies of a tunnel. Second, it filters the importance of the characteristic samples based on the random forest method. Third, it uses the XGBoost algorithm to model the processed data and compare it with AdaBoost and BP neural network models. The results show that the XGBoost model achieves a higher accuracy of 87.5% when the sample size is small. Finally, we validate the application scenarios of the above algorithm/model regarding the key aspects of the tunnel construction process, such as surrounding rock identification, design interaction, construction supervision, and quality evaluation, which facilitates the upgrading of intelligent tunnel construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.