Neuroendocrine neoplasms (NENs) are derived from endocrine cells in various organs and share common morphological features. This study aimed to clarify whether NENs of different organs are comparable at the molecular pathologic level. We retrospectively collected 99 cases of NENs from gastro-entero-pancreatic, lung, and other organs and reclassified these according to identical criteria. Grade, site, and molecular expression profile including NE markers, Ki-67, p53, somatostatin receptor type 2A (SSTR2A), and phosphatase and tensin homolog (PTEN) were compared. PTEN immunoreactivity was also compared with genomic copy number by fluorescence in situ hybridization (FISH) and droplet digital polymerase chain reaction (ddPCR). No significant differences were observed in the immunoreactivities of NE markers, p53, SSTR2A, or PTEN expression in NENs between the different organ sites. PTEN and p53 functional inactivation along with the loss of membranous SSTR2A expression appeared to be commonly involved in high-grade NEN. FISH results were significantly correlated with the level of PTEN immunoreactivity and with the findings of ddPCR analyses. The demonstration that these tumors are comparable at the molecular level will likely contribute to the broadening of therapeutic options such as the use of somatostatin analogues and mTOR inhibitors against NENs regardless of the affected organ, whereas molecular characterization of tumor grade will be useful for determining treatment strategy.
We have prepared Fe-Ni-system bilayer ribbons with different magnetostriction (compositions) and investigated the improvement of soft magnetic properties using the magnetoelastic effect. A toroidal core with D = 10 mm was made from the Fe6Ni94/Fe56Ni44 bilayer ribbon, and the B-H loop of the core was measured. The shape of the hysteresis loop dramatically changed depending on the inner layer (inner magnetic phase). This result indicates that the direction of the anisotropy induced by bending stress was changed depending on the inner layer. The slope of the B-H loop and coercivity reduced when the Fe56Ni44 layer was on the inner side. From the experimental results, we found that domain rotation was dominant for the magnetization process. Consequently, the increase in the coercivity over frequency could be suppressed by controlling the magnetization process. From these results, we found that a thin bilayer ribbon with positive and negative magnetostriction constant is an attractive material for reducing iron losses under high frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.