This paper analyzes the performance of three different semi-active control algorithms used to calculate and manage the optimal damping forces generated by a pair of magnetorheological (MR) dampers installed in a two-story building. The semi-active algorithms used are the linear quadratic regulator (LQR) associated with the clipped optimal algorithm, an algorithm based on a prediction model and a dynamic inverse model using nonlinear autoregressive exogenous (NARX)-type artificial neural networks, and a decision-making algorithm based on fuzzy logic. Additionally, the performances of the proposed semi-active algorithms are compared to those of passively used control devices. The results show response value reductions exceeding 50% for all the semi-active control strategies, which considerably outperformed the passive control. The three control strategies are thus confirmed as interesting tools with potential applications as MR damper administrators.Keywords: Structure dynamics, semi-active control of structures, vibration reduction, magnetorheological dampers, control algorithms, intelligent systems. RESUMEN En este artículo se analiza numéricamente la eficiencia y el desempeño de tres diferentes algoritmos de control semiactivo que tienen la función de calcular y administrar las fuerzas óptimas de amortiguamiento que deben ser generadas por un par de amortiguadores magnetoreológicos instalados en una estructura de dos niveles. Los algoritmos semi-activos empleados son el regulador lineal cuadrático (LQR), asociado al algoritmo clipped optimal y dos algoritmos fundamentados en sistemas inteligentes: un algoritmo basado en un modelo de predicción y en un modelo inverso dinámico construidos por medio de redes neuronales artificiales de tipo NARX y un algoritmo de toma de decisiones basados en lógica difusa. Adicionalmente, la actuación de los algoritmos de control semi-activo propuestos es comparada con el desempeño de los
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.