The molecular signals and pathways that govern biotic and abiotic stress responses in sugarcane are poorly understood. Here we describe SodERF3, a sugarcane (Saccharum officinarum L. cv Ja60-5) cDNA that encodes a 201-amino acid DNA-binding protein that acts as a transcriptional regulator of the ethylene responsive factor (ERF) superfamily. Like other ERF transcription factors, the SodERF3 protein binds to the GCC box, and its deduced amino acid sequence contains an N-terminal putative nuclear localization signal (NLS). In addition, a C-terminal short hydrophobic region that is highly homologous to an ERF-associated amphiphilic repression-like motif, typical for class II ERFs, was found. Northern and Western blot analysis showed that SodERF3 is induced by ethylene. In addition, SodERF3 is induced by ABA, salt stress and wounding. Greenhouse-grown transgenic tobacco plants (Nicotiana tabacum L. cv. SR1) expressing SodERF3 were found to display increased tolerance to drought and osmotic stress.
Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, ‘Candidatus Liberibacter asiaticus’. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with next generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. The results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.
The quest and design of new brassinosteroids analogs is a matter of current interest. Herein, the effect of short alkyl side chains and the configuration at C22 on the growth-promoting activity of a series of new brassinosteroid 24-norcholan-type analogs have been evaluated by the rice leaf inclination test using brassinolide as positive control. The highest activities were found for triol 3 with a C22(S) configuration and monobenzoylated derivatives. A docking study of these compounds into the active site of the Brassinosteroid Insensitive 1(BRI1)–ligand–BRI1-Associated Receptor Kinase 1 (BAK1) complex was performed using AutoDock Vina, and protein–ligand contacts were analyzed using LigPlot+. The results suggest that the hydrophobic interactions of ligands with the receptor BRI1LRR and hydrogen bonding with BAK1 in the complex are important for ligand recognition. For monobenzoylated derivatives, the absence of the hydrophobic end in the alkyl chain seems to be compensated by the benzoyl group. Thus, it would be interesting to determine if this result depends on the nature of the substituent group. Finally, mixtures of S/R triols 3/4 exhibit activities that are comparable or even better than those found for brassinolide. Thus, these compounds are potential candidates for application in agriculture to improve the growth and yield of plants against various types of biotic and abiotic stress.
Brassinosteroids are plant steroidal compounds involved in many functions related with plant development, metabolism, signalling and defense against a wide range of biotic and abiotic stresses. Plant architecture, which has a major effect on crop yield, is strongly influenced by brassinosteroids action. Brassinosteroids are recognized as key regulators of plant growth and development involved in a broad spectrum of processes at the molecular, cellular, and physiological levels. These roles suggest that many of the constraints of present agricultural production might be alleviated by manipulation of genetic determinants dealing with brassinosteroids, as well as by its exogenous application. Brassinosteroids are natural, nontoxic, non-genotoxic, biosafe, and eco-friendly, and can therefore be used in agriculture and horticulture to improve the growth, yields, quality, and tolerance of various plants to biotic and abiotic stresses. The present paper comprehensively reviews the latest results in the field of brassinosteroids and envisages future impacts in agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.