Human cholesteryl ester transfer protein (CETP) mediates the net transfer of cholesteryl ester mass from atheroprotective high-density lipoproteins to atherogenic low-density lipoproteins by an unknown mechanism. Delineating this mechanism would be an important step toward the rational design of new CETP inhibitors for treating cardiovascular diseases. Using EM, single-particle image processing and molecular dynamics simulation, we discovered that CETP bridges a ternary complex with its N-terminal β-barrel domain penetrating into high-density lipoproteins and its C-terminal domain interacting with low-density lipoprotein or very-low-density lipoprotein. In our mechanistic model, the CETP lipoprotein-interacting regions, which are highly mobile, form pores that connect to a hydrophobic central cavity, thereby forming a tunnel for transfer of neutral lipids from donor to acceptor lipoproteins. These new insights into CETP transfer provide a molecular basis for analyzing mechanisms for CETP inhibition.
Sleep disorders are a group of conditions that affect the ability to sleep well on a regular basis and cause significant impairments in social and occupational functions. Although currently approved medications are efficacious, they are far from satisfactory. Benzodiazepines, antidepressants, antihistamines and anxiolytics have the potential for dependence and addiction. Moreover, some of these medications can gradually impair cognition. Melatonin (N-acetyl-5-methoxytryptamine) is an endogenous hormone produced by the pineal gland and released exclusively at night. Exogenous melatonin supplementation is well tolerated and has no obvious short-or long-term adverse effects. Melatonin has been shown to synchronize the circadian rhythms, and improve the onset, duration and quality of sleep. It is centrally involved in anti-oxidation, circadian rhythmicity maintenance, sleep regulation and neuronal survival. This narrative review aims to provide a comprehensive overview of various therapeutic functions of melatonin in insomnia, sleep-related breathing disorders, hypersomnolence, circadian rhythm sleep-wake disorders and parasomnias. Melatonin offers an alternative treatment to the currently available pharmaceutical therapies for sleep disorders with significantly less side effects.
A novel ultrasensitive multiplexed immunoassay method was developed by combining alkaline phosphatase (ALP)-labeled antibody functionalized gold nanoparticles (ALP-Ab/Au NPs) and enzyme-Au NP catalyzed deposition of silver nanoparticles at a disposable immunosensor array. The immunosensor array was prepared by covalently immobilizing capture antibodies on chitosan modified screen-printed carbon electrodes. After sandwich-type immunoreactions, the ALP-Ab/Au NPs were captured on an immunosensor surface to catalyze the hydrolysis of 3-indoxyl phosphate, which produced an indoxyl intermediate to reduce Ag(+). The silver deposition process was catalyzed by both ALP and Au NPs, which amplified the detection signal. The deposited silver was then measured by anodic stripping analysis in KCl solution. Using human and mouse IgG as model analytes, this multiplexed immunoassay method showed wide linear ranges over 4 orders of magnitude with the detection limits down to 4.8 and 6.1 pg/mL, respectively. Acceptable assay results for practical samples could be obtained. The newly designed strategy avoided cross talk and the need of deoxygenation for the electrochemical immunoassay and, thus, provided a promising potential in clinical applications.
A cascade signal amplification strategy was proposed for detection of protein target at ultralow concentration by combining the rolling circle amplification (RCA) technique with oligonucleotide functionalized quantum dots (QDs), multiplex binding of the biotin-strepavidin system, and anodic stripping voltammetric detection. The RCA product containing tandem-repeat sequences could serve as excellent template for periodic assembly of QDs, which presented per protein recognition event to numerous quantum dot tags for electrochemical readout. Both the RCA and the multiplex binding system showed remarkable amplification efficiency, very little nonspecific adsorption, and low background signal. Using human vascular endothelial growth factor as a model protein, the designed strategy could quantitatively detect protein down to 16 molecules in a 100 microL sample with a linear calibration range from 1 aM to 1 pM and was amenable to quantification of protein target in complex biological matrixes. The proposed cascade signal amplification strategy would become a powerful tool for proteomics research and clinical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.