In this data release from the ongoing LOw-Frequency ARray (LOFAR) Two-metre Sky Survey (LoTSS) we present 120-168 MHz images covering 27% of the northern sky. Our coverage is split into two regions centred at approximately 12h45m +44 • 30 and 1h00m +28 • 00 and spanning 4178 and 1457 square degrees respectively. The images were derived from 3,451 hrs (7.6 PB) of LOFAR High Band Antenna data which were corrected for the direction-independent instrumental properties as well as direction-dependent ionospheric distortions during extensive, but fully automated, data processing. A catalogue of 4,396,228 radio sources is derived from our total intensity (Stokes I) maps, where the majority of these have never been detected at radio wavelengths before. At 6 resolution, our full bandwidth Stokes I continuum maps with a central frequency of 144 MHz have: a median rms sensitivity of 83 µJy/beam; a flux density scale accuracy of approximately 10%; an astrometric accuracy of 0.2 ; and we estimate the point-source completeness to be 90% at a peak brightness of 0.8 mJy/beam. By creating three 16 MHz bandwidth images across the band we are able to measure the in-band spectral index of many sources, albeit with an error on the derived spectral index of > ±0.2 which is a consequence of our flux-density scale accuracy and small fractional bandwidth. Our circular polarisation (Stokes V) 20 resolution 120-168 MHz continuum images have a median rms sensitivity of 95 µJy/beam, and we estimate a Stokes I to Stokes V leakage of 0.056%. Our linear polarisation (Stokes Q and Stokes U) image cubes consist of 480 × 97.6 kHz wide planes and have a median rms sensitivity per plane of 10.8 mJy/beam at 4 and 2.2 mJy/beam at 20 ; we estimate the Stokes I to Stokes Q/U leakage to be approximately 0.2%. Here we characterise and publicly release our Stokes I, Q, U and V images in addition to the calibrated uv-data to facilitate the thorough scientific exploitation of this unique dataset.
Context. The interstellar and intra-cluster medium (ICM) in giant elliptical galaxies and clusters of galaxies is often assumed to be in hydrostatic equilibrium. Numerical simulations, however, show that about 5-30% of the pressure in a cluster is provided by turbulence induced by, for example, the central active galactic nucleus (AGN) and merger activity. Aims. We aim to put constraints on the turbulent velocities and the turbulent pressure in the ICM of the giant elliptical galaxies NGC 5044 and NGC 5813 using XMM-Newton reflection grating spectrometer (RGS) observations. Methods. The magnitude of the turbulence is estimated using the Fe xvii lines at 15.01 Å, 17.05 Å, and 17.10 Å in the RGS spectra. At low turbulent velocities, the gas becomes optically thick in the 15.01 Å line due to resonant scattering, while the 17 Å lines remain optically thin. By comparing the (I 17.05 + I 17.10 )/I 15.01 line ratio from RGS with simulated line ratios for different Mach numbers, the level of turbulence is constrained. The measurement is, however, limited by the systematic uncertainty in the line ratio for an optically thin plasma, which is about 20-30%. Results. We find that the (I 17.05 + I 17.10 )/I 15.01 line ratio in NGC 5813 is significantly higher than in NGC 5044. This difference can be explained by a higher level of turbulence in NGC 5044. The best estimates for the turbulent velocities using resonant scattering and upper limits from the line widths, are 320 < V turb < 720 km s −1 for NGC 5044 and 140 < V turb < 540 km s −1 for NGC 5813 at the 90% confidence limit. Conclusions. The high turbulent velocities and the fraction of the turbulent pressure support of >40% in NGC 5044, assuming isotropic turbulence, confirm that it is a highly disturbed system, probably due to an off-axis merger. The turbulent pressure support in NGC 5813 is more modest at 15-45%. The (I 17.05 + I 17.10 )/I 15.01 line ratio in an optically thin plasma, calculated using AtomDB v2.0.1, is 2σ above the ratio measured in NGC 5044, which cannot be explained by resonant scattering. This shows that the discrepancies between theoretical, laboratory, and astrophysical data on Fe xvii lines need to be reduced to improve the accuracy of the determination of turbulent velocities using resonant scattering.
Context. The hot gas in clusters and groups of galaxies is continuously being enriched with metals from supernovae and stars. It is well established that the enrichment of the gas with elements from oxygen to iron is mainly caused by supernova explosions. The origins of nitrogen and carbon are still being debated. Possible candidates include massive, metal-rich stars, early generations of massive stars, intermediate-or low-mass stars and asymptotic giant branch (AGB) stars. Aims. In this paper we accurately determine the metal abundances of the gas in the groups of galaxies NGC 5044 and NGC 5813, and discuss the nature of the objects that create these metals. We mainly focus on carbon and nitrogen. Methods. We use spatially-resolved high-resolution X-ray spectroscopy from XMM-Newton. For the spectral fitting, multitemperature hot gas models are used. Results. The abundance ratios of carbon over oxygen and nitrogen over oxygen that we find are high compared to the ratios in the stars in the disk of our Galaxy. The oxygen and nitrogen abundances we derive are similar to what has been found in earlier work on other giant ellipticals in comparable environments. We show that the iron abundances in both our sources have a gradient along the cross-dispersion direction of the reflection grating spectrometer (RGS). Conclusions. We conclude that it is unlikely that the creation of nitrogen and carbon takes place in massive stars, which end their lives as core-collapse supernovae, enriching the medium with oxygen because oxygen should then also be enhanced. Therefore we favour low-and intermediate-mass stars as sources of these elements. The abundances in the hot gas can be explained best by a 30-40% contribution of type Ia supernovae based on the measured oxygen and iron abundances and under the assumption of a Salpeter initial mass function (IMF).
We describe the APERture Tile In Focus (Apertif) system, a phased array feed (PAF) upgrade of the Westerbork Synthesis Radio Telescope that transforms this telescope into a high-sensitivity, wide-field-of-view L-band imaging and transient survey instrument. Using novel PAF technology, up to 40 partially overlapping beams are formed on the sky simultaneously, significantly increasing the survey speed of the telescope. With this upgraded instrument, an imaging survey covering an area of 2300 deg 2 is being performed that will deliver both continuum and spectral line datasets, of which the first data have been publicly released. In addition, a time domain transient and pulsar survey covering 15 000 deg 2 is in progress. An overview of the Apertif science drivers, hardware, and software of the upgraded telescope is presented, along with its key performance characteristics.
Context. The physics of the coolest phases in the hot intra-cluster medium (ICM) of clusters of galaxies is yet to be fully unveiled. X-ray cavities blown by the central active galactic nucleus (AGN) contain enough energy to heat the surrounding gas and stop cooling, but locally blobs or filaments of gas appear to be able to cool to low temperatures of 10 4 K. In X-rays, however, gas with temperatures lower than 0.5 keV is not observed. Aims. We aim to find spatial and multi-temperature structures in the hot gas of the cooling-core cluster Abell 2052 that contain clues on the physics involved in the heating and cooling of the plasma. Methods. 2D maps of the temperature, entropy, and iron abundance are derived from XMM-Newton data of Abell 2052. For the spectral fitting, we use differential emission measure (DEM) models to account for the multi-temperature structure. Results. About 130 kpc South-West of the central galaxy, we discover a discontinuity in the surface brightness of the hot gas which is consistent with a cold front. Interestingly, the iron abundance jumps from ∼0.75 to ∼0.5 across the front. In a smaller region to the North-West of the central galaxy we find a relatively high contribution of cool 0.5 keV gas, but no X-ray emitting gas is detected below that temperature. However, the region appears to be associated with much cooler Hα filaments in the optical waveband. Conclusions. The elliptical shape of the cold front in the SW of the cluster suggests that the front is caused by sloshing of the hot gas in the clusters gravitational potential. This effect is probably an important mechanism to transport metals from the core region to the outer parts of the cluster. The smooth temperature profile across the sharp jump in the metalicity indicates the presence of heat conduction and the lack of mixing across the discontinuity. The cool blob of gas NW of the central galaxy was probably pushed away from the core and squeezed by the adjacent bubble, where it can cool efficiently and relatively undisturbed by the AGN. Shock induced mixing between the two phases may cause the 0.5 keV gas to cool non-radiatively and explain our non-detection of gas below 0.5 keV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.