Atomic‐molecular engineering is an effective way to accurately tailor the microstructures and components of materials at the micro‐nano scale, which can be applied to flexibly manipulate their electromagnetic (EM) response. Herein, graphene microlaminates with multi‐layer structure are fabricated by atomic cluster engineering and oxidative molecular layer deposition for the first time. The microlaminates enable a tunable EM loss (from 0.93 to 3.94 for imaginary permittivity and from 0.17 to 0.25 for imaginary permeability) by changing poly(3,4‐ethylenedioxythiophene) cycles, and the attenuation constant reaches 160. On this basis, multifunctional antennas are conceived, achieving frequency‐selective response that enables steady harvest of > 90% of EM energy from signal source, and tactfully recycling waste heat energy and mechanical energy. This study will furnish a new horizon for information transmission and artificial intelligence in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.