In this study, a standardized food model (SFM) and simulated gastrointestinal fluids have been used to study the fate of e-TiO2-NPs following a three-step digestion model in vitro.
Food matrices could affect the physicochemical properties of nanoparticles (NPs) and define the biological effects of NPs via oral exposure compared with the pristine NPs. We established a standardized dietary model based on Chinese dietary reference intakes and Chinese dietary guidelines to mimic the exposure of NPs in real life and to evaluate further the biological effect and toxicity of NPs via oral exposure compared with current models. The standardized dietary model prepared from the primary emulsion was dried into powder using spray drying compared with commercial food powder and then was reconstituted compared with the fresh sample. The average particle size (295.59 nm), potential (−23.78 mV), viscosity (0.04 pa s), and colors (L*, a*, b* = 84.13, −0.116, 8.908) were measured and characterized of the fresh sample. The flowability (repose angle = 37.28° and slide angle = 36.75°), moisture (2.68%), colors (L*, a*, b* = 94.16, −0.27, 3.01), and bulk density (0.45 g/ml) were compared with commercial food powder. The size (310.75 nm), potential (−23.98 mV), and viscosity (0.04 pa s) of reconstituted model were similar to the fresh sample. Results demonstrated that the model was satisfy the characterizations of easy to fabrication, good stability, small particle size, narrow particle size distribution, strong practicability, and good reproducibility similar to most physiological food state and will be used to evaluate NPs’ safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.