In this paper, exponential synchronization problem of complex dynamical networks with unknown periodically coupling strengths was investigated. An aperiodically intermittent control synchronization strategy is proposed. Based on Lyapunov exponential stability theory, inequality techniques, and adaptive learning laws design, some sufficient exponential synchronization criteria for complex dynamical network with unknown periodical coupling weights are obtained. The numerical simulation example is presented to illustrate the feasibility of theoretical results.
In this paper, we investigate finite-time synchronization problems of complex dynamical networks with different dimensions of nodes, which contain unknown periodically coupling structures and bounded time-varying delay. Based on finite-time stability theory, the inequality techniques, and the properties of Kronecker production of matrices, some useful finite-time synchronization criteria for complex dynamical network with unknown periodical couplings have been obtained. In addition, with proper adaptive periodical learning law designed, the unknown periodical couplings have been estimated successfully. Finally, some simulation examples are performed to verify the theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.