Machine vision-based automatic detection of marine organisms is a fundamental task for the effective analysis of production and habitat changes in marine ranches. However, challenges of underwater imaging, such as blurring, image degradation, scale variation of marine organisms, and background complexity, have limited the performance of image recognition. To overcome these issues, underwater object detection is implemented by an improved YOLOV5 with an attention mechanism and multiple-scale detection strategies for detecting four types of common marine organisms in the natural scene. An image enhancement module is employed to improve the image quality and extend the observation range. Subsequently, a triplet attention mechanism is introduced to the YOLOV5 model to improve the feature extraction ability. Moreover, the structure of the prediction head of YOLOV5 is optimized to capture small-sized objects. Ablation studies are conducted to analyze and validate the effective performance of each module. Moreover, performance evaluation results demonstrate that our proposed marine organism detection model is superior to the state-of-the-art models in both accuracy and speed. Furthermore, the proposed model is deployed on an embedded device and its processing time is less than 1 s. These results show that the proposed model has the potential for real-time observation by mobile platforms or undersea equipment.
Detecting and classifying the plankton in situ to analyze the population diversity and abundance is fundamental for the understanding of marine planktonic ecosystem. However, the features of plankton are subtle, and the distribution of different plankton taxa is extremely imbalanced in the real marine environment, both of which limit the detection and classification performance of them while implementing the advanced recognition models, especially for the rare taxa. In this paper, a novel plankton detection strategy is proposed combining with a cycle-consistent adversarial network and a densely connected YOLOV3 model, which not only solves the class imbalanced distribution problem of plankton by augmenting data volume for the rare taxa but also reduces the loss of the features in the plankton detection neural network. The mAP of the proposed plankton detection strategy achieved 97.21% and 97.14%, respectively, under two experimental datasets with a difference in the number of rare taxa, which demonstrated the superior performance of plankton detection comparing with other state-of-the-art models. Especially for the rare taxa, the detection accuracy for each rare taxa is improved by about 4.02% on average under the two experimental datasets. Furthermore, the proposed strategy may have the potential to be deployed into an autonomous underwater vehicle for mobile plankton ecosystem observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.