Unattended intelligent cargo handling is an important means to improve the efficiency and safety of port cargo trans-shipment, where high-precision carton detection is an unquestioned prerequisite. Therefore, this paper introduces an adaptive image augmentation method for high-precision carton detection. First, the imaging parameters of the images are clustered into various scenarios, and the imaging parameters and perspectives are adaptively adjusted to achieve the automatic augmenting and balancing of the carton dataset in each scenario, which reduces the interference of the scenarios on the carton detection precision. Then, the carton boundary features are extracted and stochastically sampled to synthesize new images, thus enhancing the detection performance of the trained model for dense cargo boundaries. Moreover, the weight function of the hyperparameters of the trained model is constructed to achieve their preferential crossover during genetic evolution to ensure the training efficiency of the augmented dataset. Finally, an intelligent cargo handling platform is developed and field experiments are conducted. The outcomes of the experiments reveal that the method attains a detection precision of 0.828. This technique significantly enhances the detection precision by 18.1% and 4.4% when compared to the baseline and other methods, which provides a reliable guarantee for intelligent cargo handling processes.