In order to improve the wear resistance of CoCrNi alloy, TiC was introduced into the alloy and wear-resistant CoCrNi/(TiC)x composites were designed. The effects of TiC contents on the microstructure, mechanical properties, and wear resistance of CoCrNi matrix were investigated, respectively. It was found that the TiC produced dissolution and precipitation process in CoCrNi alloy, and a large number of needled and blocky TiC particles were precipitated in the composites. The compressive yield strength of CoCrNi/(TiC)x composites increased with the increasing TiC content. Compared with the CoCrNi alloy, the yield strength of CoCrNi/(TiC)x composites increased from 108 to 1371 MPa, and the corresponding strengthening mechanism contributed to the second phase strengthening. The wear resistance of CoCrNi/(TiC)x composites was also greatly improved due to the strengthening of TiC. Compared with the CoCrNi alloy, the specific wear rate of CoCrNi/(TiC)1.0 alloy was reduced by about 77%. The wear resistance of CoCrNi/(TiC)x composites was enhanced with the increasing content of TiC addition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.