We develop an N-coordination strategy to design a robust CO reduction reaction (CORR) electrocatalyst with atomically dispersed Co-N site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CORR with CO Faradaic efficiency (FE) above 90% over a wide potential range from -0.57 to -0.88 V (the FE exceeded 99% at -0.73 and -0.79 V). The CO current density and FE remained nearly unchanged after electrolyzing 10 h, revealing remarkable stability. Experiments and density functional theory calculations demonstrate single-atom Co-N site is the dominating active center simultaneously for CO activation, the rapid formation of key intermediate COOH* as well as the desorption of CO.
Developing an efficient single-atom material (SAM) synthesis and exploring the energy-related catalytic reaction are important but still challenging. A polymerization-pyrolysis-evaporation (PPE) strategy was developed to synthesize N-doped porous carbon (NPC) with anchored atomically dispersed Fe-N catalytic sites. This material was derived from predesigned bimetallic Zn/Fe polyphthalocyanine. Experiments and calculations demonstrate the formed Fe-N site exhibits superior trifunctional electrocatalytic performance for oxygen reduction, oxygen evolution, and hydrogen evolution reactions. In overall water splitting and rechargeable Zn-air battery devices containing the Fe-N SAs/NPC catalyst, it exhibits high efficiency and extraordinary stability. This current PPE method is a general strategy for preparing M SAs/NPC (M=Co, Ni, Mn), bringing new perspectives for designing various SAMs for catalytic application.
Photocatalytic conversion of carbon dioxide (CO(2)) to hydrocarbons such as methanol makes possible simultaneous solar energy harvesting and CO(2) reduction, two birds with one stone for the energy and environmental issues. This work describes a high photocatalytic conversion of CO(2) to methanol using graphene oxides (GOs) as a promising photocatalyst. The modified Hummer's method has been applied to synthesize the GO based photocatalyst for the enhanced catalytic activity. The photocatalytic CO(2) to methanol conversion rate on modified graphene oxide (GO-3) is 0.172 μmol g cat(-1) h(-1) under visible light, which is six-fold higher than the pure TiO(2).
The HER catalytic efficiency of cobalt phosphide-based catalysts can be enhanced significantly by adjusting crystalline phase and carbon species structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.