Farnesyl-diphosphate synthase (FPPS) catalyzes the synthesis of farnesyl diphosphate, an important precursor of sterols, dolichols, ubiquinones, and prenylated proteins. We report the cloning and characterization of two Toxoplasma gondii farnesyl-diphosphate synthase (TgFPPS) homologs. A single genetic locus produces two transcripts, TgFPPS and TgFPPSi, by alternative splicing. Both isoforms were heterologously expressed in Escherichia coli, but only TgFPPS was active. The protein products predicted from the nucleotide sequences have 646 and 605 amino acids and apparent molecular masses of 69.5 and 64.5 kDa, respectively. Several conserved sequence motifs found in other prenyl-diphosphate synthases are present in both TgFPPSs. TgFPPS was also expressed in the baculovirus system and was biochemically characterized. In contrast to the FPPS of other eukaryotic organisms, TgFPPS is bifunctional, catalyzing the formation of both farnesyl diphosphate and geranylgeranyl diphosphate. TgFPPS localizes to the mitochondria, as determined by the co-localisation of the affinity-purified antibodies against the protein with MitoTracker, and in accord with the presence of an N-terminal mitochondria-targeting signal in the protein. This enzyme is an attractive target for drug development, because the order of inhibition of the enzyme by a number of bisphosphonates is the same as that for inhibition of parasite growth. In summary, we report the first bifunctional farnesyl-diphosphate/geranylgeranyldiphosphate synthase identified in eukaryotes, which, together with previous results, establishes this enzyme as a valid target for the chemotherapy of toxoplasmosis.Toxoplasma gondii is a pathogenic protozoan parasite that infects a wide range of vertebrate hosts, including humans. T. gondii has been recognized as a major opportunistic pathogen of fetuses from recently infected mothers and of immunocompromised patients, i.e. those with AIDS. Toxoplasmic encephalitis is associated with high mortality and morbidity and is one of the most common opportunistic infections of the central nervous system in human immunodeficiency virus-infected patients (1). The chemotherapy for toxoplasmosis is not ideal especially for the AIDS patient because there is relapse of the infection if the treatment is halted because of intolerance of the patient to the side effects. Almost all the drugs in use have toxicity associated with their continued use. In addition, most of the recommended treatments do not have an effect on the slow growing bradyzoite forms.Isoprenoids are the most diverse and abundant compounds occurring in nature. Many types of isoprenoids (e.g. steroids, cholesterol, retinoids, carotenoids, ubiquinones, and prenyl groups bound to proteins) are essential components of the cellular machinery of all organisms because of their roles in a variety of biological processes. Despite their structural and functional variety, all isoprenoids derive from a common precursor, isopentenyl diphosphate (IPP), 2 and its isomer, dimethylallyl diphosphate (...
We have investigated the activity of 60 bisphosphonates against the replication of Toxoplasma gondii in vitro and of three of the most active compounds, in vivo. The two most active compounds found were n-alkyl bisphosphonates containing long (n = 9 or 10) hydrocarbon chains, not the nitrogen-containing species used in bone resorption therapy. The target of all of the most active bisphosphonates appears to be the isoprene biosynthesis pathway enzyme farnesyl pyrophosphate synthase (FPPS), as indicated by the correlations between T. gondii growth inhibition and FPPS (human and Leishmania major) enzyme inhibition and by the fact that a T. gondii strain engineered to overexpress FPPS required considerably higher levels of bisphosphonates to achieve 50% growth inhibition, while the IC(50) for atovaquone (which does not inhibit FPPS) remained the same in the overexpressing strain. The phosphonate inhibitor of the non-mevalonate pathway, fosmidomycin, which inhibits the enzyme 1-deoxyxylulose-5-phosphate reductoisomerase, had no effect on T. gondii growth. To investigate structure-activity relationships (SARs) in more detail, we used two three-dimensional quantitative SAR methods: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), to investigate all 60 bisphosphonates. Both the CoMFA and CoMSIA models indicated a 60-70% contribution from steric interactions and a 30-40% contribution from electrostatic interactions and using four N = 55 training sets for each method, we found on average between a factor of 2 and 3 error in IC(50) prediction. The three most active compounds found in vitro were tested in vivo in a Smith-Webster mouse model and the two most active bisphosphonates were found to provide up to an 80% protection from death, a considerable improvement over that found previously with nitrogen-containing bisphosphonates. This effect may originate in the much higher therapeutic indices of these alkyl bisphosphonates, as deduced from in vitro assays using LD(50) values for growth inhibition of a human cell line. Overall, these results indicate that alkyl bisphosphonates are promising compounds for further development as agents against Toxoplasma gondii growth, in vivo.
The risks and benefits of diets and supplements containing the estrogenic soy isoflavone genistein are not well established. We report that 10 nm genistein potently induces the granzyme B inhibitor, proteinase inhibitor 9 (PI-9) in MCF-7 human breast cancer cells. By inducing PI-9, genistein inhibits the ability of human natural killer (NK) cells to lyse the target breast cancer cells. In ERalphaHA cells, stably transfected MCF-7 cells, which contain elevated levels of estrogen receptor-alpha (ERalpha), 100 pm genistein or 17beta-estradiol potently induce PI-9 and prevent NK cells from killing the target breast cancer cells. The concentrations of genistein that fully induce PI-9 in MCF-7 cells, and in ERalphaHA cells, are far lower than those previously reported to elicit estrogenic responses through ERalpha. Because 4-hydroxytamoxifen, raloxifene, and ICI 182,780/Faslodex all block genistein induction of PI-9 and elevated levels of ERalpha enhance induction of PI-9, genistein acts via ERalpha to induce PI-9. Increasing levels of ERalpha in breast cancer cells results in a progressive increase in induction of PI-9 by genistein and in the cell's ability to evade killing by NK cells. Moderate levels of dietary genistein and soy flour effectively induce PI-9 in human breast cancers grown in ovariectomized athymic mice. A significant population consumes levels of genistein in soy products that may be high enough to induce PI-9, perhaps potentiating the survival of some preexisting breast cancers by enabling them to evade immunosurveillance.
This study was designed to study the individual or combined effects of estrogen and bipedal stance "exercise" on the lumbar vertebral body (LVB) and femoral neck (FN). At 6 months of age, six rats were sacrificed as baseline controls and all the others were either bilateral sham-ovariectomized or ovariectomized (OVX). Groups of OVX rats were housed in normal height cage (NC, 28 cm) or raised height cages (RC, 33 cm) and received biweekly s.c. injections of 10 microg/kg 17 beta estradiol (E2) or vehicle for 4 and 8 weeks. Histomorphometric measurements were performed on the undecalcified mid-transverse sections of the 4th LVB and FN. Ovariectomy alone induced cancellous bone loss by 21% and 39% in the LVB and FN, respectively; intracortical porosity area of the FN increased by 108% while total bone area did not change significantly because of the periosteal expansion following OVX. E2 alone partially prevented cancellous bone loss in the LVB and FN and prevented increased intracortical porosity area in the FN by reducing eroded surface and activation frequency. RC alone partially prevented the decrease of cancellous bone in the LVB and FN by reducing the bone-eroded surface but increased wall width. E2 plus RC completely preserved cancellous bone by having an additive effect on reducing eroded surface and activation frequency. RC helped to partially prevent decreased periosteal bone formation after estrogen administration. In conclusion, apart from inducing cancellous bone loss in the LVB and FN, OVX also increased intracortical remodeling in the FN. Estrogen prevented the overall activation of remodeling space induced by OVX. Apart from having similar effects as estrogen on remodeling space, RC induced positive bone balance within each remodeling unit. Combination treatment increased total bone mass beyond that of sham-control level by having an additive effect on lowering bone remodeling and increasing wall in both the LVB and FN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.