Recently, Halder et al (2019 Phys. Rev. Lett. 122 040403) proposed the concept of strong nonlocality without entanglement: an orthogonal set of fully product states in multipartite quantum systems that is locally irreducible for every bipartition of its subsystems. Due to the complexity of the problem, most results are limited to tripartite systems. Here we consider a weaker form of nonlocality which is called local distinguishability based genuine nonlocality. A set of orthogonal multipartite quantum states is said to be genuinely nonlocal if it is locally indistinguishable for every bipartition of the subsystems. In this work, we study how to construct sets of orthogonal product states which are genuinely nonlocal. Firstly, we present a set of product states with simple structure in bipartite systems that is locally indistinguishable. After that, based on a simple observation, we present a general method to construct genuinely nonlocal sets of multipartite product states by using those sets that are genuinely nonlocal but with less parties. As a consequence, we obtain that genuinely nonlocal sets of fully product states exist in any L parties systems provided L ⩾ 3 and d i ⩾ 3 for all i.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.