Promoting development and function of brown and beige fat may reduce obesity. Here, we show that fat SIRT6 expression is markedly induced by cold exposure and a β-adrenergic agonist. Deletion of SIRT6 in adipose tissue impairs the thermogenic function of brown adipocytes, causing a morphological "whitening" of brown fat, reduced oxygen (O) consumption, obesity, decreased core body temperature, and cold sensitivity. Fat SIRT6-deleted mice exhibit increased blood glucose levels, severe insulin resistance, and hepatic steatosis. Moreover, SIRT6 deficiency inhibits the browning of white adipose tissue (WAT) following cold exposure or β3-agonist treatment. Depletion of SIRT6 expression in brown adipocytes reduces expression of thermogenic genes, causing a reduction in cellular respiration. Conversely, SIRT6 overexpression in primary fat cells stimulates the thermogenic program. Mechanistically, SIRT6 interacts with and promotes phospho-ATF2 binding to the PGC-1α gene promoter to activate its expression. The present study reveals a critical role for SIRT6 in regulating thermogenesis of fat.
Because of the mass and functions in metabolism, skeletal muscle is one of the major organs regulating whole body metabolic homeostasis. SIRT6, a histone deacetylase, has been shown to regulate metabolism in liver and brain; however, its specific role in skeletal muscle is undetermined. In the present study we explored physiological function of SIRT6 in muscle. We generated a muscle-specific SIRT6 knockout mouse model. The mice with SIRT6 deficiency in muscle displayed impaired glucose homeostasis and insulin sensitivity, attenuated whole body energy expenditure, and weakened exercise performance. Mechanistically, deletion of SIRT6 in muscle decreased expression of genes involved in glucose and lipid uptake, fatty acid oxidation, and mitochondrial oxidative phosphorylation in muscle cells because of the reduced AMP-activated protein kinase (AMPK) activity. In contrast, overexpression of SIRT6 in CC myotubes activates AMPK. Our results from both gain- and loss-of-function experiments identify SIRT6 as a physiological regulator of muscle mitochondrial function. These findings indicate that SIRT6 is a potential therapeutic target for treatment of type 2 diabetes mellitus.
Due to extremely poor systemic bioavailability, the mechanism by which curcumin increases energy expenditure remains unelucidated. Accumulating evidence suggests a strong association between the gut microbiota (GM) and energy metabolism....
KLF10 is an important regulator of hepatic glucose metabolism and modulation of KLF10 expression in the liver may be an attractive approach for the treatment of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.