Conjugated porous polymers (CPPs), a class of fully crosslinked polymers, as heterogeneous photocatalysts are reviewed revealing a wide range of chemical transformations including hydrogen production, organic synthesis and photopolymerization.
Self-standing thiol (-SH) groups within a Zr(IV)-based metal-organic framework (MOF) anchor Pd(II) atoms for catalytic applications: the spatial constraint prevents the thiol groups from sealing off/poisoning the Pd(II) center, while the strong Pd-S bond precludes Pd leaching, enabling multiple cycles of heterogeneous catalysis to be executed.
We report the dramatic triggering of structural order in a Zr(IV)-based metal−organic framework (MOF) through docking of HgCl 2 guests. Although as-made crystals were unsuitable for single crystal X-ray diffraction (SCXRD), with diffraction limited to low angles well below atomic resolution due to intrinsic structural disorder, permeation of HgCl 2 not only leaves the crystals intact but also resulted in fully resolved backbone as well as thioether side groups. The crystal structure revealed elaborate HgCl 2 -thioether aggregates nested within the host octahedra to form a hierarchical, multifunctional net. The chelating thioether groups also promote Hg(II) removal from water, while the trapped Hg(II) can be easily extricated by 2-mercaptoethanol to reactivate the MOF sorbent.
Hard-and-soft combo does the trick: hard and robust Zr(iv)-carboxylate nodes build up the net, while soft allyl and sulfur donors selectively extract Pd(ii)-from amongst other elements in nuclear wastes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.