In this work, we demonstrate the high-power and high-responsivity performance of the dual multiplication (M-) layers in In0.52 Al0.48 As based avalanche photodiode (APD). The dual M-layer design in our APD structure effectively constrains the multiplication process to a thin high-field region rather than the whole thick M-layer. It thus minimizes the space charge effect (SCE) within and avoids increasing the tunneling dark current for the case of directly shrinking M-layer thickness in APD. Furthermore, by combining the specially designed mesa shape with this dual M-layer structure, the edge breakdown can be well suppressed. These benefits lead to an ultra-high gain-bandwidth product (450 GHz; 1 A/W at unit gain) and a high saturation current (>12 mA) can be simultaneously achieved in our device. By nonlinearly driving a wavelength sweeping laser in the self-heterodyne lidar setup, it can generate an optical pulse train-like waveform, providing an effective optical modulation depth of 200% to feed into our demonstrated APD at the receiver-end. Under such scheme, the photo-generated RF (1 GHz) power from our APD with a 6.3 A/W responsivity can be as high as +6.95 dBm at a high (7 mA) output photocurrent. Such high-power and highresponsivity characteristics of our APD can further improve the signal-to-noise (S/N) ratio and dynamic range performances in each pixel of the lidar image. A high-quality 3-dimensional (D) FMCW lidar image is constructed based on our APD, without the integration of any electrical amplifier at the receiver end.
We carry out an In0.53Ga0.47As/In0.52Al0.48As single photon avalanche diode which exhibits a single photon detection efficiency exceeding 60% at 1310 nm and neat temporal characteristic of 65 ps. A novel concept of dual multiplication layer is incorporated to avoid the tradeoff between dark count rate, afterpulsing and timing jitter, paving the possibility to improve the overall performance of a single photon detector. Based on this elevated device structure, we further optimize the detection efficiency and timing jitter by employing a delicate mesa structure to better confine the electric field distribution within the central multiplication region. For our detector operated under gated mode, a shorten gate width together with an increase of excess bias percentage leads to a significant improvement in the detection performance. We eventually achieve a single photon detection efficiency of 61.4% without the involvement of afterpulsing at the gating frequency of 10 kHz for 200 K.
The performance of InGaAs/InAlAs single photon avalanche diodes (SPAD) was improved with fabrication in triple mesa. Current SPADs achieve better dark count rate of 5 × 104 ⁄2 for single photon detection efficiency of 31% at RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.