We carry out an In0.53Ga0.47As/In0.52Al0.48As single photon avalanche diode which exhibits a single photon detection efficiency exceeding 60% at 1310 nm and neat temporal characteristic of 65 ps. A novel concept of dual multiplication layer is incorporated to avoid the tradeoff between dark count rate, afterpulsing and timing jitter, paving the possibility to improve the overall performance of a single photon detector. Based on this elevated device structure, we further optimize the detection efficiency and timing jitter by employing a delicate mesa structure to better confine the electric field distribution within the central multiplication region. For our detector operated under gated mode, a shorten gate width together with an increase of excess bias percentage leads to a significant improvement in the detection performance. We eventually achieve a single photon detection efficiency of 61.4% without the involvement of afterpulsing at the gating frequency of 10 kHz for 200 K.
We have incorporated a novel design of stepwise electric field in the multiplication layers to the InGaAs/InAlAs single photon avalanche diodes (SPADs). The stepwise electric field profile aims to circumvent the dilemma between dark count rate, afterpulsing and temporal performance. SPADs with large (240 µm) and small (25 µm) active area are fabricated and characterized. The intrinsic temporal response for large and small SPADs has a full-width at half maximum of 72 and 67 ps respectively. Importantly, the diffusion tail exhibits only about 200 ps full-width at one-thousandth maximum, showing fast and neat temporal characteristics. Such devices also present reasonable dark count rate of 5 × 10 6 Hz and 3 × 10 7 Hz and moderate single photon detection efficiency of 32 % and 27 % at about 200 K respectively for large and small devices, manifesting that the avalanche build-up time can be improved without losing the detection performance using our specific design and optimized electric field distribution. Such improvement in temporal performance of SPADs should facilitate their capability in the applications of time-correlated single photon counting and light detection and ranging.INDEX TERMS Single photon avalanche diode (SPAD), timing jitter, light detection and ranging.
We present novel InGaAs/InAlAs single photon avalanche diodes with dual multiplication layers, large active diameters (240µm), high detection efficiency (32%), record small jitter (35ps), and low afterpulsing (<1% at 2µs hold-off time) at nearly 200K.
The performance of InGaAs/InAlAs single photon avalanche diodes (SPAD) was improved with fabrication in triple mesa. Current SPADs achieve better dark count rate of 5 × 104 ⁄2 for single photon detection efficiency of 31% at RT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.