This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
This is an open access article under the terms of the Creat ive Commo ns Attri butio n-NonCo mmerc ial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Virus-induced gene silencing (VIGS) is an effective strategy for rapid gene function analysis. It is well established that the NAC transcription factor and salicylic acid (SA) signal pathway play essential roles in response to biotic stresses. However, simultaneous silencing of two target genes using VIGS in plants has been rarely reported. Therefore, in this report, we performed VIGS to silence simultaneously the SA-binding protein 2 (NbSABP2) and NbNAC1 in Nicotiana benthamiana to investigate the gene silencing efficiency of simultaneous silencing of two genes. We first cloned the full-length NbNAC1 gene, and the characterization of NbNAC1 was also analysed. Overlap extension polymerase chain reaction (PCR) analysis showed that the combination of NbSABP2 and NbNAC1 was successfully amplified. Bacteria liquid PCR confirmed that the combination of NbSABP2 and NbNAC1 was successfully inserted into the tobacco rattle virus vector. The results showed that the leaves from the NbSABP2 and NbNAC1 gene-silenced plants collapsed slightly, with browning at the base of petiole or veina. Quantitative real-time PCR results showed that the expression of NbSABP2 and NbNAC1 were significantly reduced in 12 days post silenced plants after tobacco rattle virus infiltration compared with the control plants. Overall, our results suggest that VIGS can be used to silence simultaneously two target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.