In this work, the high-performance junctionless-mode (JL) and low-power inversion-mode (IM) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with nanosheet channels (less than 10-nm in thickness) are vertically integrated in monolithic three-dimensional integrated circuit (3D-IC) structure. Both JL and IM TFTs can exhibit high on/off current ratio over 10 7 to demonstrate their performance. The JL TFT has much higher on-state current ~ 24 times than it of the IM TFT. And the IM-TFT has much lower SS ~ 0.104 V/decade and off-current ~ 0.04 times than them of the JL TFT. However, the fabrication of the top-devices (JL TFTs) would degrade the performance of underlying-devices (IM TFTs), resulting in the threshold voltage shift of the IM TFTs from 0.61 to 2.17 V, SS increase from 0.104 to 0.218 V/decade and on-state current degradation from 16 to 3 A. In order to further understand the reasons, the IM TFT with top-device removal process is also fabricated, which exhibits a partial recovery in performance. The results indicate the presence and fabrication process of the top-device would lead to the defect generation in the underlying-device. The results provide a new consideration for monolithic 3D-IC manufacturing technology. Index Terms-Monolithic 3D-IC; nanosheet channel; low power; thin-film transistor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.