Lithium metal batteries (LMB) are vital devices for high-energy-density energy storage, but Li metal anode is highly reactive with electrolyte and forms uncontrolled dendrite that can cause undesirable parasitic reactions thus poor cycling stability and raise safety concerns. Despite remarkable progress made to partly solve these issues, the Li metal still plate at the electrode/electrolyte interface where the parasitic reactions and dendrite formation invariably occur. Here we demonstrate the inwardgrowth plating of Li into a metal foil while avoiding surface deposition, which is driven by the reversible solid-solution based alloy phase change. Lithiation of the solid solution alloy phase facilitates the freshly generated Li atoms at the surface to sink into the foil, while the reversible alloy phase change is companied by the dealloying reaction during delithiation, which extracts Li atoms from inside of the foil. The yielded dendrite free Li anode produces an enhanced Coulombic efficiency of 99.5 0.2% with a reversible capacity of 1660 mA h g -1 (3.3 mA h cm -2 ).
K-ion batteries (KIBs) are now drawing increasing research interest as an inexpensive alternative to Li-ion batteries (LIBs). However, due to the large size of K, stable electrode materials capable of sustaining the repeated K intercalation/deintercalation cycles are extremely deficient especially if a satisfactory reversible capacity is expected. Herein, we demonstrated that the structural engineering of carbon into a hollow interconnected architecture, a shape similar to the neuron-cell network, promised high conceptual and technological potential for a high-performance KIB anode. Using melamine-formaldehyde resin as the starting material, we identify an interesting glass blowing effect of this polymeric precursor during its carbonization, which features a skeleton-softening process followed by its spontaneous hollowing. When used as a KIB anode, the carbon scaffold with interconnected hollow channels can ensure a resilient structure for a stable potassiation/depotassiation process and deliver an extraordinary capacity (340 mAh g at 0.1 C) together with a superior cycling stability (no obvious fading over 150 cycles at 0.5 C).
Due to their abundant resources and potential price advantage, potassium-ion batteries (KIBs) have recently drawn increasing attention as a promising alternative to lithium-ion batteries (LIBs) for their applications in electrochemical energy storage applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.