The development of efficient sequencing techniques has resulted in large numbers of genomes being available for evolutionary studies. However, only one genome is available for all amphibians, that of Xenopus tropicalis, which is distantly related from the majority of frogs. More than 96% of frogs belong to the Neobatrachia, and no genome exists for this group. This dearth of amphibian genomes greatly restricts genomic studies of amphibians and, more generally, our understanding of tetrapod genome evolution. To fill this gap, we provide the de novo genome of a Tibetan Plateau frog, Nanorana parkeri, and compare it to that of X. tropicalis and other vertebrates. This genome encodes more than 20,000 protein-coding genes, a number similar to that of Xenopus. Although the genome size of Nanorana is considerably larger than that of Xenopus (2.3 vs. 1.5 Gb), most of the difference is due to the respective number of transposable elements in the two genomes. The two frogs exhibit considerable conserved whole-genome synteny despite having diverged approximately 266 Ma, indicating a slow rate of DNA structural evolution in anurans. Multigenome synteny blocks further show that amphibians have fewer interchromosomal rearrangements than mammals but have a comparable rate of intrachromosomal rearrangements. Our analysis also identifies 11 Mb of anuran-specific highly conserved elements that will be useful for comparative genomic analyses of frogs. The Nanorana genome offers an improved understanding of evolution of tetrapod genomes and also provides a genomic reference for other evolutionary studies.de novo genome | transposable elements | chromosome rearrangement | highly conserved element T he age of genomics has ushered in opportunities to decode the history of evolution in ways unimaginable only a decade ago. More than 100 complete genomes have been sequenced and released for vertebrates. Amphibians, however, are poorly represented among these genomes. Despite the existence of more than 7,000 living species of amphibians, only the genome of Xenopus tropicalis (1) has been published. Xenopus tropicalis, however, falls outside of the Neobatrachia, which contains more than 96% of the known frog species (2). As a result, no neobatrachian genome is available for comparative analyses. Thus, this dearth of amphibian genomes greatly restricts comparative genomic studies of amphibians, and more generally, our understanding of a critical portion of tetrapod genome evolution at the major aquatic to terrestrial transition of vertebrates.Nanorana (Dicroglossidae) includes more than 20 species of frogs native to Asia (research.amnh.org/vz/herpetology/amphibia). In this genus, three species, Nanorana parkeri, Nanorana pleskei, and Nanorana ventripunctata, are endemic to the QinghaiTibetan Plateau (3). In contrast to Xenopus, which is a secondarily derived aquatic obligate, species of Nanorana exhibit the terrestrial adult lifestyle that is typical of most anurans. N. parkeri occurs at elevations ranging from 2,850 to 5,000 m. Because thi...
Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.