The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.
Thermoelectric generators (TEGs) are an excellent candidate for powering wearable electronics and the “Internet of Things,” due to their capability of directly converting heat to electrical energy. Here, we report a high-performance wearable TEG with superior stretchability, self-healability, recyclability, and Lego-like reconfigurability, by combining modular thermoelectric chips, dynamic covalent polyimine, and flowable liquid-metal electrical wiring in a mechanical architecture design of “soft motherboard-rigid plugin modules.” A record-high open-circuit voltage among flexible TEGs is achieved, reaching 1 V/cm2 at a temperature difference of 95 K. Furthermore, this TEG is integrated with a wavelength-selective metamaterial film on the cold side, leading to greatly improved device performance under solar irradiation, which is critically important for wearable energy harvesting during outdoor activities. The optimal properties and design concepts of TEGs reported here can pave the way for delivering the next-generation high-performance, adaptable, customizable, durable, economical, and eco-friendly energy-harvesting devices with wide applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.