Up-conversion luminescence in rare earth ions (REs) doped nanoparticles has attracted considerable research attention for the promising applications in solid-state lasers, three-dimensional displays, solar cells, biological imaging, and so forth. However, there have been no reports on REs doped nanoparticles to investigate their polarized energy transfer up-conversion, especially for single particle. Herein, the polarized energy transfer up-conversion from REs doped fluoride nanorods is demonstrated in a single particle spectroscopy mode for the first time. Unique luminescent phenomena, for example, sharp energy level split and singlet-to-triplet transitions at room temperature, multiple discrete luminescence intensity periodic variation with polarization direction, are observed upon excitation with 980 nm linearly polarized laser. Furthermore, nanorods with the controllable aspect ratio and symmetry are fabricated for analysis of the mechanism of polarization anisotropy. The comparative experiments suggest that intraions transition properties and crystal local symmetry dominate the polarization anisotropy, which is also confirmed by density functional theory calculations. Taking advantage of the REs based up-conversion, potential application in polarized microscopic multi-information transportation is suggested for the polarization anisotropy from REs doped fluoride single nanorod or nanorod array.
Near-infrared quantum cutting involving the emission of near-infrared photons by downconversion cooperative energy transfer from Eu2+ to Yb3+ in borate glasses was reported. Electron spin resonance spectra and absorption spectra were measured to prove the existence of Eu2+ in borate glasses. Excitation, emission, and fluorescence decay measurements were performed to examine the occurrence of cooperative energy transfer from Eu2+ to Yb3+ ions. Yb3+ concentration dependent quantum efficiency was calculated and the maximum efficiency approaches 164.19%.
In this work, a sensitive and selective ratiometric fluorescence sensing platform was built for the detection of tyrosinase (TYR) activity and dopamine (DA) using glutathione (GSH) protected gold nanoclusters (Au NCs) as probes. Upon excitation at 350 nm, Au NCs displayed an intense red emission, which could be effectively quenched by quinones. TYR, a typical polyphenol oxidase, can catalyze the oxidization of DA to o-quinone and therefore quenched the fluorescence of Au NCs. Moreover, the reaction of TYR and DA gave rise to an emission band at 400 nm, which increased in a TYR/DA-concentration-dependent manner. The ratiometric signal variations were utilized for facile, sensitive, and selective detection of TYR activity and DA. A linear range was obtained from 0.006-3.6 unit mL(-1) of TYR activity, while the linear range for detection of DA was 1.0 nM to 1.0 mM. Additionally, it constructed a useful platform for TYR inhibitor screening in biomedical research.
We show that Ce(3+) can be an efficient sensitizer for Yb(3+) in the host lattice of yttrium aluminum garnet (YAG). With blue-light excitation to induce the 4f-->5d transition of Ce(3+), characteristic near-IR emission of Yb(3+) due to transition of (2)F(5/2)-->(2)F(7/2) peaking at 1030 nm is generated as a result of energy transfer from Ce(3+) to Yb(3+). The result of spectral evolution with temperature indicates that the efficiency of energy transfer is enhanced owing to thermal effect. This evidence implies that the phonon-assisted process participates in the downconversion of YAG: Ce(3+), Yb(3+).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.