To mitigate global warming and achieve carbon neutrality, biomass has become a widely used carbon-neutral energy source due to its low cost and easy availability. However, the incomplete combustion of biomass can produce polycyclic aromatic hydrocarbons (PAHs), which are harmful to human health. Moreover, increasing numbers of wildfires in many regions caused by global warming have greatly increased the emissions of PAHs from biomass burning. To effectively mitigate PAH pollution and health risks associated with biomass usage, the concentrations, compositions and influencing factors of PAH emissions from biomass burning are summarized in this review. High PAH emissions from open burning and stove burning are found, and two- to four-ring PAHs account for a higher proportion than five- and six-ring PAHs. Based on the mechanism of biomass burning, biomass with higher volatile matter, cellulose, lignin, potassium salts and moisture produces more PAHs. Moreover, burning biomass in stoves at a high temperature or with an insufficient oxygen supply can increase PAH emissions. Therefore, the formation and emission of PAHs can be reduced by pelletizing, briquetting or carbonizing biomass to increase its density and burning efficiency. This review contributes to a comprehensive understanding of PAH pollution from biomass burning, providing prospective insight for preventing air pollution and health hazards associated with carbon neutrality.
Total suspended particles (TSP) were collected in Vladivostok, Russia, which is a typical port city. This study investigated the concentration, potential sources, and long-term variation in particle PAHs and NPAHs in the atmosphere of Vladivostok. The PAH and NPAH concentrations were higher in winter than in summer (PAHs: winter: 18.6 ± 9.80 ng/m3 summer: 0.54 ± 0.21 ng/m3; NPAHs: winter: 143 ± 81.5 pg/m3 summer: 143 ± 81.5 pg/m3). The diagnostic ratios showed that PAHs and NPAHs mainly came from vehicle emissions in both seasons, while heating systems were the main source of air pollution in winter. The TEQ assessment values were 2.90 ng/m3 and 0.06 ng/m3 in winter and summer, respectively, suggesting a significant excess cancer risk in the general population in winter. The ILCR values conveyed a potential carcinogenic risk because the value was between 1 × 10−5 and 1 × 10−7 and ingestion was a main contributor in Vladivostok. However, it is worth noting that the concentrations of PAHs and NPAHs showed an overall downward trend from 1999 to 2020. An important reason for this is the cogenerations project implemented by the Far Eastern Center for Strategic Research on Fuel and Energy Complex Development in 2010. This research clarified the latest variations in PAHs and NPAHs to provide continuous observation data for future chemical reaction or model prediction research.
In this study, the levels of fine particulate matter (PM2.5), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were determined from 2020 to 2021 in Singapore. For analysis convenience, the sampling period was classified according to two monsoon periods and the inter-monsoon period. Considering Singapore’s typically tropical monsoon climate, the four seasons were divided into the northeast monsoon season (NE), southwest monsoon season (SW), presouthwest monsoon season (PSW) and prenortheast monsoon season (PNE)). The PM2.5 concentration reached 17.1 ± 8.38 μg/m3, which was slightly higher than that in 2015, and the average PAH concentration continuously declined during the sampling period compared to that reported in previous studies in 2006 and 2015. This is the first report of NPAHs in Singapore indicating a concentration of 13.1 ± 10.7 pg/m3. The seasonal variation in the PAH and NPAH concentrations in PM2.5 did not obviously differ owing to the unique geographical location and almost uniform climate changes in Singapore. Diagnostic ratios revealed that PAHs and NPAHs mainly originated from local vehicle emissions during all seasons. 2-Nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFR) in Singapore were mainly formed under the daytime OH-initiated reaction pathway. Combined with airmass backward trajectory analysis, the Indonesia air mass could have influenced Singapore’s air pollution levels in PSW. However, these survey results showed that no effect was found on the concentrations of PAHs and NPAHs in PM2.5 in Indonesia during SW because of Indonesia’s efforts in the environment. It is worth noting that air masses from southern China could impact the PAH and NPAH concentrations according to long-range transportation during the NE. The results of the total incremental lifetime cancer risk (ILCR) via three exposure routes (ingestion, inhalation and dermal absorption) for males and females during the four seasons indicated a low long-term potential carcinogenic risk, with values ranging from 10−10 to 10−7. This study systematically explains the latest pollution conditions, sources, and potential health risks in Singapore, and comprehensively analyses the impact of the tropical monsoon system on air pollution in Singapore, providing a new perspective on the transmission mechanism of global air pollution.
Particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) were first systematically studied in downtown (XT), suburban (GL) and rural (DA) sites in winter and summer in Hanoi, Vietnam, from 2019 to 2022. The mean concentrations of PAHs and NPAHs ranged from 0.76 ng m−3 to 50.2 ng m−3 and 6.07 pg m−3 to 1.95 ng m−3, respectively. The concentrations of PAHs and NPAHs in winter were higher than in summer, except for NPAHs in XT. We found the benzo[a]pyrene (BaP)/benzo[ghi]perylene (BgPe) ratio could effectively identify biomass burning in this study, in which a higher [BaP]/[BgPe] value indicates a greater effect of biomass burning on PAHs and NPAHs. The results indicated that atmospheric PAHs and NPAHs were mainly affected by motor vehicles (especially the unique motorcycles in Southeast Asia) in the summer in Hanoi. In winter, all sites were affected by the burning of rice straw to varying degrees, especially DA. The incremental lifetime cancer risk (ILCR) in Hanoi was first determined through ingestion, inhalation and dermal absorption. The results showed that residents in Hanoi faced high health risks, while females experienced higher health risks than males. The ingestion and dermal pathways indicated higher exposure risks than the usually considered inhalation pathway.
Two Asian dust (AD) events were observed in March 2021 (AD1: 16 March 2021 00:00 UTC~17 March 2021 12:00 UTC and AD2: 28 March 2021 00:00 UTC~31 March 2021 12:00 UTC). To determine the chemical characteristics of water-soluble inorganic ions (WSIIs) in different types of Asian dust, the total suspended particulates (TSP) were collected at Kanazawa University Wajima Air Monitoring Station (KUWAMS), a background site in Japan from 27 February to 4 March, 2021. Based on the lidar observations and the backwards trajectory analysis results, AD events were divided into two types: ADN (aerosols were mainly mineral dust) and ADP (aerosols were mixtures of spherical particles). During ADs, the concentrations of the TSP and WSII increased, with the highest TSP concentration in ADN (38.6 μg/m3) and the highest WSII concentration in ADP (5.82 μg/m3). The increase in (cations)/(anions) during AD indicates that the input of AD aerosol buffered the aerosol acidity. Additionally, a significant increase in Cl depletion, along with ADN events, was found (Cl depletion = 73.8%). To comprehensively analyse the different types of ADs on WSIIs, we refer to the previous data from 2010 to 2015 at KUWAMS. As a result, the increased Cl depletion was caused by the heterogeneous reaction of HNO3 with sea salt when the air mass passed over the Japanese Sea. Additionally, the chemical form of SO42− was highly dependent on the source and pathway, while SO42− mainly came from natural soil dust in ADN and from anthropogenic emissions in ADP. The enhancement of secondary NO3− was observed in AD via the heterogeneous hydrolysis of N2O5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.